
1 3+1 split of spacetime

“Standard” numerical methods for dynamical systems are designed for PDEs that look [roughly]

like:

∂tU = Ap∂pU + S (1)

Time derivative (first order in time). Spatial derivatives.

But GR looks like: Gab = 8πTab Everything mixed up. But geometrical.

→ Let us locally introduce a time coordinate t, assuming now that we have a spacetime (M, g)

[not necessarily Einsteinian]. Then we will see how to “split up” the spacetime into space and

time geometrically. But throughout remember that t is arbitrary. In the end, we want a form

like (1) → Cauchy or “initial value problem”.

Try to express geometry in terms of “intrinsic” and “extrinsic” quantities to Σt.

Σt

Σt+dt

A (xi)

dτ = αdt

αna

Σt−dt

Figure 1: Σt = level set t = const of t.

Notation:

� a, b, c, ... abstract indices.

� µ, ν, δ, ... 4D component indices (0,1,2,3).

� i, j, k, ... spatial indices (1,2,3).

� ( ) symmetrization.

� [ ] antisymmetrization. Like normal.

� (-,+,+,+) signature.

� gab - 4 metric. ∇a - spacetime covariant derivative compatible with gab.

� γab - 3 metric. Da - spatial covariant derivative.

�
(4)Rabcd - 4 Riemann tensor, 2∇[a∇b]Vc =(4) Rabc

dVd.

� Rabcd - 3 Riemann tensor.
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Lapse function (α): α−2 = −(∇at)(∇at) Lapse→ proper time elapsed between hypersurfaces

as seen by an observer moving along the normal direction (dτ = αdt). So what is α−2?

Remember: gµν = gab(eµ)a(e
ν)b = gab∇ax

µ∇bx
ν → in coordinate basis.

Unit normal vector: na = −α∇at Normal to what?

Consider a curve X(S) : R→M with t = constant along X.

(M → R4) (Stick coordinates on). (Take t as time coordinate).

Then X : Xµ(S) has tangent vector Sµ = d
dS
Xµ(S) = (0, Ẋ i(S))T .

Compute gµνn
µSν = −α∇µt S

µ = −α[1 · 0 + 0iẊ
i(S)] = 0.

So na is normal to the tangent vector of any curve contained in Σt. If Σt spacelike, nana = −1.

Example: Minkowski: t normal time coordinate

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

∇µt = (1, 0, 0, 0)

α−2 = −ηµν(∇µt)(∇νt) = 1

nµ = −α∇µt = (1, 0, 0, 0)T

The spatial metric: [Sometimes called 3-metric]. γab = gab + nanb. Check: naγab =

nb + (nan
a)nb = nb − nb = 0

Example: Minkowski: constant t slices nµ = (1, 0, 0, 0)T and γµν =


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Projection operator: γab = gab + nanb. Check: γabγ

b
c = γac “Repeated application does

nothing new”. Good projector operator.

Now we want to decompose tensors using na and γab.

Example: 3+1 split of a vector:

V a = gabV
b = −na (nbV

b)︸ ︷︷ ︸ + γabV
b︸ ︷︷ ︸

Normal component. Spatial part of V .

BREAK

Let us now take arbitrary coordinates xi on the slice Σt. [Ok, in a neighbourhood, but could

make argument purely in submanifold.]

We have: ∇µt = (1, 0, 0, 0) → nµ = (−α,~0).

We also need the partial time derivative “time vector” tµ = (1,~0)T in our coordinates. In
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Minkowski (in standard coordinates) nµ = (1,~0)T = (∂t)
µ. But nµ 6= tµ in general.

nµ = na∇ax
µ =

(
α−1,− 1

α
(−αni)

)T
=
(
α−1,−α−1(−αni)

)T
→ tµ ≡ (∂t)

µ = (1,~0)T = αnµ + (αn)iδi
µ︸ ︷︷ ︸ = αnµ + βµ

βµ components of “shift vector”.

Shift vector is spatial: βµnµ = 0

Abstract indices: ta = αna + βa βana = 0

Recall: (Coordinate) basis one-forms: ∇aX
µ .

(Coordinate) basis vectors:
(
∂
∂Xµ

)a
.

These satisfy (by definition):
(

∂
∂Xµ

)a∇aX
ν = δµ

ν

So simply we have: ∇at→ time coordinate basis one-form, ta → time coordinate basis vector.

(Weakness in NR textbooks.)

Σt

Σt+dt dτ = αdt

dxi = βidt
na

βa

αna

Easy exercise - show:

gµν =

(
− 1
α2

βi

α2

βj

α2 γij − βiβj

α2

)
. It follows: gµν =

(
−α2 + βkβ

k βj

βi γij

)
.

Another exercise: Check gµνgνδ = δµδ .

Out of curiosity: γµν =

(
0 0

0 γij

)
and γµν =

(
βkβ

k βj

βi γij

)
.

Now that we have a metric in Σt, covariant derivative of γab?

DaXb...
c... ≡ γa

dγb
eγf

c...∇dXe...
f... with X spatial, i.e. n ·X = 0 [Contraction on any index].

Linear X Leibniz X

Compatibility: Daγbc = γa
dγb

eγc
f∇d(gef +nenf ) = γb

eneγa
dγc

f∇dnf + (b↔ c) = 0 as γb
ene = 0

by construction.

[[→ Might be worried about dimensionality, # components of 4-Christoffels. Inverse spatial

metric? This will all work out!]]
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Now we’ve seen how to express one part of ∇X under the 3+1 decomposition. This was the

part “intrinsic” to the slice.

Extrinsic curvature:

Consider 2 spacelike vectors Ua, V a and take:

Ua∇aV
b = U cγc

a[∇aV
d][γd

b − ndnb]

= UaDaV
b︸ ︷︷ ︸ − Uaγa

c(∇cV
d)ndn

b︸ ︷︷ ︸ = UaDaV
b + Uaγa

c(∇cnd)V
dnb︸ ︷︷ ︸ [Why?]

Covariant derivative in Σt. Bit “outside”. Note: no ∇V here.

Define “extrinsic curvature”:

Kab = −γac∇cnb = −γacγbd∇cnd [Why?] = γa
cγb

d[∇c(α∇dt)] = γa
cγb

d[α∇c∇dt+∇dt∇cα]

= γa
cγb

d[α∇c∇dt− α−1nd∇cα] = αγa
cγb

d∇c∇dt Symmetric!

Don’t be confused by name. In coordinates: really part of the Christoffels.

So: Ua∇aV
b = UaDaV

b − (KacU
aV c)nb .

Equivalent expressions: Kab = −1
2
Lnγab = −1

2
nc∇cγab − γc(a∇b)n

c = −∇anb − naab
with ab ≡ nc∇cnb “acceleration of Eulerian observers”.

Looks strange. Just check by brute force.

Examples:

� Minkowski, global inertial frame: nµ = (1, 0, 0, 0), Kµν = 0.

� Schwarzschild spacetime, Schw. coords: ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2

∇µt = (1, 0, 0, 0); α =
(
1− 2M

r

)1/2
; nµ = −

(
1− 2M

r

)1/2
(1, 0, 0, 0); Kµν = 0.

� Schwarzschild spacetime, Kerr-Schild coordinates:

New time coordinate: T = t+ 2M ln
∣∣ r

2M
− 1
∣∣,

so the metric is: ds2 = −
(
1− 2M

r

)
dT 2 + 4M

r
dT dr +

(
1 + 2M

r

)
dr2 + r2dΩ2

→ No coordinate singularity at the horizon.

α =
(
1 + 2M

r

)−1/2
, Krr = − 2M(M+r)√

r6(2M+r)
.

So far, introduced t. Derived / defined: α (some component of metric), na, γab (some other

components. Which ones?), βa. → Bits of the metric.

Then we had: γa
b∇b{spatial tensor} →

{
Kab − Extrinsic curvature “How slice is curved in ambient space”.

Da − intrinsic covariant derivative

For na∇a{spatial tensor} → Typically introduce Ln“tensor” (+ extrinsic curvature terms).

Example decomposition of the spacetime covariant derivative of a vector:

∇aV
b = ga

c∇cV
b = (γa

c−nanc)∇cV
b = γa

c∇cV
b − nanc∇cV

b = γa
c∇cV

d[gd
b]− na(nc∇cV

b) =

γa
c∇cV

d[γd
b − ndnb]− na(LnV b + V c∇cn

b) = γa
cγd

b∇cV
d − nbγacnd∇cV

d − naLnV b − naV c∇cn
b

= DaV
b + nbV dγa

c∇cnd − naLnV b − naV dγd
c∇cn

b = DaV
b − nbKacV

c − naLnV b + naKc
bV c
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Next time: Check counting and break up curvature.

BREAK

[Quick recap]

[coordinates] Given / choose t, xi [Drawing of Σt’s embedding.]

→ [metric] α - lapse, normal vector na; βa - shift vector; γab - spatial metric / projector operator

→ [Christoffels] Da - intrinsic covariant derivative; Kab - extrinsic curvature “How Σt is curved

by ambient spacetime”. → [curvature??]

Want to 3+1 decompose curvature.

First: spring cleaning and counting

We’ve introduced several spatial tensors α, γab, Kab, β
a.

Spatial should somehow mean that they act on (co)vectors in the (dual) tangent space of points

in Σt, TpΣt.

This is 3-dimensional - so expect to have only 3 value indices. But so far we’re stuck with

spacetime indices. Let’s fix this!

Start with some spatial vector V a. In our coordinates we have: [Drawing of Σt’s embedding.]

nµ = (−α,~0), nµ = ( 1
α
, −β

i

α
)T and Vµ = (V0, Vi), V

µ = (V 0, V i)T .

Vµn
µ = 0→ V0 · 1

α
− βi

α
· Vi = 0→ V0 = βiVi

V µnµ = 0→ −αV 0 = 0→ V 0 = 0

→ Similar for other spatial tensors: If you know the spatial (i, j, k) components, you can

construct the rest by “n · tensor” = 0.

Upstairs “0” components will be 0. Downstairs “0” components will pick up terms like βiXi.

Some counting:

Christoffel symbols (4)Γµνδ - 40 components. Check we have everything:

� (Da →) Γijk → 18 components

� Kij → +6 components = 24 components so far

� ∂µα, ∂µβ
i → +16 components = 40 components → So we have it all!

Decomposition of the curvature:

Want to express (4)Rabcd in terms of Rijkl, Rij, Kij, ...

Due to Riemann symmetries, only 3 combinations are non-vanishing.

� Total projection onto the spacelike hypersurface Σt - the Gauss equation:

γeaγ
f
b γ

g
cγ

h
d

(4)Refgh = Rabcd + KacKbd − KadKbc = Rabcd + 2Ka[cKd]b.
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� First contract once with n, then project - the Codazzi-Mainardi equation:

γeaγ
f
b γ

g
cn

d (4)Refgd = DbKac −DaKbc = 2D[bKa]c.

� Alternating [and using ab = Db lnα] - the Ricci equation:

γean
bγfc n

d (4)Rebfd = LnKac +
1

α
DaDcα + KadK

d
c .

We will derive each of these in turn.

Gauss equation: By definition of Riemann, for any vector Uh.

γeaγ
f
b γ

g
cU

h (4)Refgh = 2γeaγ
f
b γ

g
c∇[e∇f ]Ug Now take Uh spatial.

Want to use γca∇cU
b = DaU

b − nbKacU
c as derived before.

γeaγ
f
b γ

g
c∇[e∇f ]Ug = γe[aγ

f
b]γ

g
c︸ ︷︷ ︸ ∇e∇fUg = γe[aγ

f
b]γ

g
c∇e(γ

h
f∇hUg)− γe[aγ

f
b]γ

g
c [∇e(nfn

h)]∇hUg︸ ︷︷ ︸
Just carry this.

Shifting antisymmetrization more

convenient for following manipulation.

(*)

Using compatibility of gab with ∇a.

Work on (*):

− γe[aγ
f
b]γ

g
c [∇e(nfn

h)]∇hUg = −γe[aγ
f
b]γ

g
c [(∇enf )n

h + (∇en
h)nf ]∇hUg [2nd term 0 due to n ⊥ γ]

= −γe[aγ
f
b]γ

g
c∇enf n

h∇hUg = γgcK[ab]n
h∇hUg = 0 Back to Gauss:

γeaγ
f
b γ

g
cU

h (4)Refgh = 2γe[aγ
f
b]γcg∇e(γ

h
f∇hU

g) = 2γe[aγ
f
b]γcg∇e(DfU

g − ngKfhU
h)

= 2D[aDb]Uc − 2γe[aγ
f
b]γcg(∇en

g)KfhU
h = RabcdU

d + 2Kc[aKb]hU
h

As we wanted, since Ua is an arbitrary spatial tensor.

Codazzi-Mainardi equation: Use definition of Riemann as before.

γeaγ
f
b γ

g
cn

h (4)Refgh = 2γeaγ
f
b γ

g
c∇[e∇f ]ng = −2γeaγ

f
b γ

g
c∇[e|(K|f ]g+n|f ]ag) = −2D[aKb]c+2γgcagK[ab]

[Last term is zero].

Ricci equation: Lemma: Acceleration of Eulerian observers [normal, propagate perpen-

dicular to the hypersurfaces]

ab = γcbn
d∇dnc = αγcb∇d(α

−1 nc)n
d = α2γcb(∇d∇ct)∇dt = α−1γcb∇c[{−∇at∇at}−1/2] = α−1Dbα

= Db lnα

[Used γbanb = 0, ab spatial since nb∇anb = 0 since nana = −1.]

→ ∇anb = −Kab − naab = −Kab − naDb lnα .
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Ok, now some pain:

γean
fγgbn

h (4)Refgh = 2γean
fγgb∇[e∇f ]ng = −2γean

fγgb∇[e|(K|f ]g + n|f ]Dg lnα)

= −γeanfγ
g
b∇eKfg + γean

fγgb∇fKeg + γeaγ
g
b∇e(Dg lnα) + γean

fγgb (∇fne)(Dg lnα)

= γeaKfgγ
g
b∇en

f + γean
fγgb∇fKeg +Da(Db lnα) +Da(lnα)Db(lnα)

= −Ka
fKbf + nf∇fKab + 2n(a|n

enf∇fK|b)e + nanbn
enfng∇fKeg

+Da(α
−1Dbα) + α−2(Daα)(Dbα)

= −Ka
cKcb + nf∇fKab − 2n(a|K|b)en

f∇fn
e − nanbnfngKeg∇fn

e(→ 0) + α−1DaDbα

naKab = 0→ na∇cKba = −Kba∇cn
a.

But look: −2n(a|K|b)en
f∇fn

e = −2n(a|K|b)ea
e = 2Ke(a|[K|b)

e +∇|b)ne]
Recall Lie derivative: LnKab = nc∇cKab + 2Kc(a∇b)n

c

So: γean
fγgbn

h (4)Refgh = −Ka
cKcb + nf∇fKab + 2Ke(a|[K|b)

e +∇|b)ne] + α−1DaDbα

= LnKab + α−1DaDbα +Ka
cKcb

BREAK

So far: 3+1 decomposition of geometry. Now to GR!

Einstein equations: Gab = 8πTab with Gab = (4)Rab − 1
2
gab

(4)R.

Decompose S-E tensor: ρ = nanbTab, ja = −nbγcaTbc, Sab = γcaγ
d
bTcd.

(4)Rab = (4)Rc
acb will need contractions. Let’s work these out.

Contract Gauss equation with spatial metric [twice]:

γacγbd[γeaγ
f
b γ

g
cγ

h
d

(4)Refgh]
q

(4)R + 2nanb(4)Rab

= R +K2 −KabK
ab = R +K2 −KijK

ij → in adapted coordinates.

Scalar Gauss equation: (4)R + 2nanb(4)Rab = R +K2 −KijK
ij

Contract Codazzi-Mainardi equation with the spatial metric [once]:

γac[γeaγ
f
b γ

g
cn

h (4)Refgh]
q

naγcb
(4)Rac

= DbK −DaK
a
b

Contracted Codazzi equation: naγcb
(4)Rac = DbK −DaK

a
b

Hamiltonian constraint:
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nanb[(4)Rab − 1
2
gab

(4)R]
q

1
2

LHS Scalar Gauss
q

1
2
(R +K2 −KabK

ab)

= nanb8πTab = 8πρ

R +K2 −KabK
ab = 16πρ − No time derivatives!

Momentum constraint:
nbγca[

(4)Rbc − 1
2
gbc

(4)R]
q

nbγca
(4)Rbc LHS Contracted Codazzi

q
DaK −DbK

b
a

= nbγca8πTbc = −8πja

DbK
b
a −DaK = 8πja − No time derivatives!

Evolution eq. for γab: Lnγab = −2Kab Definition of Kab. (na = 1
α

(ta − βa) , ta = αna + βa)

Ltγab = tc∇cγab + 2γc(a∇b)t
c → This is ∂tγij in adapted coordinates. Why?

= (αnc + βc)∇cγab + 2γc(a∇b)[αn
c + βc]

= α[nc∇cγab + 2γc(a∇b)n
c] + [βc∇cγab + 2γc(a∇b)β

c] + 2ncγc(a∇b)α(→ 0)

= αLnγab + Lβγab = −2αKab + Lβγab

Notice that this would work replacing γab with any symmetric spatial tensor.

Ltγab = −2αKab + Lβγab But this is really just rewriting definition of Kab. Still need 6 EEs!

Evolution equation for Kab: Write EE’s in trace-reversed form as: (4)Rab = 8π
(
Tab − 1

2
gabT

)
Project: γcaγ

d
b

(4)Rcd = γcaγ
d
b g

ef (4)Rcedf = γcaγ
d
b γ

ef (4)Rcedf︸ ︷︷ ︸ − γcaγ
d
bn

enf (4)Rcedf︸ ︷︷ ︸
Use Gauss equation. Use Ricci equation.

Putting this together: LnKab = −α−1DaDbα+Rab+KKab−2Ka
cKbc−8π[Sab− 1

2
γab(S−ρ)]

Same trick on Lie derivative as in previous case:

LtKab = −DaDbα + α[Rab +KKab − 2Ka
cKbc]− 8πα[Sab − 1

2
γab(S − ρ)] + LβKab

Finally: ADM [better “York”] equations in adapted coordinates a→ i, Lt → ∂t

H = R +K2 −KabK
ab − 16πρ = 0

Ma = DbK
b
a −DaK − 8πja = 0 Prototype “free-evolution” formulation

Ltγab = −2αKab + Lβγab In original ADM:

LtKab = −DaDbα + α[Rab +KKab − 2Ka
cKbc]− 8πα[Sab − 1

2
γab(S − ρ)] + LβKab−α

4
γabH
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Counting:

4-metric: 10 - 4 constraints - 4 “gauge” d.o.f = 2 → dynamical degrees of freedom

3-metric + extrinsic curvature: 12 - 4 constraints - 4 “gauge” d.o.f = 4 →
2 for spatial metric and 2 for extrinsic curvature.

Comparison with the Maxwell equations: writing them in flat space, with vector potential:

DiE
i = 4πρE → constraint

∂tAi = −Ei − ∂iΦ → evolution equations

∂tEi = −∆Ai +DiD
jAj − 4πjK

Analogy: Ai → γij, Φ→ βi, Ei → Kij

Hamiltonian formulation: [See Alcubierre, p. 75, 80-81] Since we’re always talking about the

ADM equations [Arnowitt, Deser, Misner], let’s at least say what ADM really did.

Lagrangian density for GR: L =
√
−g (4)R = α

√
γ (R+KabK

ab−K2), with γ det. of 3-metric.

Canonical momentum conjugate to γab: π
ab = δL

δγ̇ab
=
√
γ [Kγab −Kab], with γ̇ab = Ltγab.

Lapse and shift have no canonical momenta attached, so they’re not dynamical variables.

Hamiltonian density in normal way by Legendre transform: H = πabγ̇ab−L. Total Hamiltonian:

H = −
∫

Σt

(α CH − 2βa CH
a

)
√
γ d3x “vanishes on shell”; Kab = − 1√

γ

(
πab − 1

2
γabπ

)

Hamiltonian constraint Momentum constraint

Equations of motion (by variation): γ̇ab = δH
δπab

, π̇ab = − δH
δγab

. Equivalently by Poisson bracket.

ADM formulation [?] (derived from the Einstein tensor) differs in a simple way from the “York”

formulation [?] (derived from the Ricci tensor).
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2 PDEs: well-posedness and hyperbolicity

PDEs of physics: The physicist’s intuition:

In classical mechanics the motion of physical quantities is universally described by PDEs. These

PDEs can be characterized most simply as either elliptic, parabolic or hyperbolic.

First simplest version: Consider 2nd order, linear PDE with constant coefficients:

a uxx + 2b uxy + c uyy + “lower order terms” = 0, with a2 + b2 + c2 > 0.

� Elliptic: b2 − ac < 0

No intrinsic “time”, good BVP-model, ex: Laplace eqn.

Constraints: [Standard form]. H = R +K2 −KijK
ij, Mi = Dj(Kij − γijK)

� Parabolic: b2 = ac

Intrinsic time, good IVP, infinite propagation speeds, ex: heat equation.

(Apparent horizons). (Some methods).

� Hyperbolic: b2 − ac > 0

Time - and causality: i.e. finite propagation speeds. Fundamental particularly in rela-

tivistic context. Ex: wave eqn. ADM evolution equations [in some sense]

∂tγij = −2αKij + Lβγij, ∂tKij = −DiDjα + α[Rij +KKij − 2Ki
kKjk]LβKij

Life is complicated! Models in nature arise with all types - especially in theories with “gauge

freedom” like E&M, GR. Encounter all three types!

Type of problem (IVP, IBVP, BVP) determined by classification.

Well-posedness: A PDE problem is called well-posed if there exists a unique solution that

depends continuously (on some norm) on given data.

“Change initial data a little, outcome changes a little”.

Hyperbolic PDE systems in first order form [Kreiss Busenhart]

Consider a system of PDEs of the form ∂tU = Ap∂pU + S (1), with U(t, xi) = U ∈ Rn and

where Ap in as (n× n) matrix ∀p. [constant]

Cauchy/IVP: Specify U(t = 0, xi). What is the solution U(t, xi)?

PDE problem well-posed if there’s a norm || · || such that ||U(t, ·)|| ≤ Keαt||U(0, ·)|| with K

and α constants independent of initial data. (|| · ||, (i) ||aU || = |a| ||U ||, (ii) triangle inequality

(||U + V || ≤ ||U ||+ ||V ||), (iii) ||U || = 0⇔ U = 0).

Example of ill-posed IVP: 2D Laplace equation: ∂2
t φ = −∂2

xφ.

First order reduction: ∂tφ = U1, ∂xφ = U2 → ∂tU1 = −∂xU2, ∂tU2 = ∂xU1.

Choose ID: φ(0, x) = eikxφ0 → Solution: φ = φ0e
kt+ikx [Cheating! But you can take the real

part.] U1 = kφ0e
kt+ikx, U2 = ikφ0e

kt+ikx Exponential growth dependent on initial data. [Code

exercise].

Example 2: Weakly hyperbolic model problem: ∂t

(
U1

U2

)
=

(
1 1

0 1

)
∂x

(
U1

U2

)
, with U =
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(U1, U2)T

Initial data: U(0, x) = (Beikx, Aeikx)T ⇒ U1(t, x) = (ikAt + B)eik(t+x), U2(t, x) = Aeik(t+x).

U2 is fine (oscillates in time → bounded), U1 presents a linear growth but rate depends on ID.

IVP ill-posed. [Code exercise].

So what does work?

Weak, strong and symmetric hyperbolicity

Consider IVP for (1). Take arbitrary unit vector si. The principal symbol in the si direction is

As = Aisi.
Defn: If ∀si the principal symbol has real eigenvalues, the system is called weakly hyperbolic.

Defn: If ∀si the principal symbol has real eigenvalues and a complete set of eigenvectors, and

|Ts| + |T−1
s | ≤ K (with K independent of si and Ts has eigenvectors of ps as columns)

holds, then the system is strongly hyperbolic.

Defn: If there exists a symmetric (Hermitian, or self-adjoint, complex square matrix equal to its

own complex-conjugate transpose: for A Hermitian, aij = aji or A = AT = AH = A+),

positive definite matrix H (independent of si), called a symmetrizer, such that HAp is

symmetric (Hermitian) ∀p, then the system is called symmetric hyperbolic.

Diagram: (for systems of the form of (1))

Strict hyperbolicity: all eigenvalues real and distinct.

Strictly

S
ym

metric

Strongly

Weakly

Intuitive summary:

� Symmetric hyperbolicity: good IBVP (depending on bcs).

� Strong hyperbolicity: good IVP, IBVP harder.

� Weak hyperbolicity: nothing!

Theorem: IVP for (1) is wellposed iff the system is strongly hyperbolic.

(Part of) Proof: Apply Fourier transform f̂ =
∫∞
−∞ fe

2πiωxdx to (1): ∂tÛ = i|ω|Aω′Û

Strong hyperbolicity⇔∃ similarity transformation such that S(ω′)Aω
′
S−1(ω′) = Λ =

 λ1 . . . 0
...

. . .
...

0 · · · λn


S−1(ω′) is matrix of eigenvectors as columns Ts above.

Let Ĥ(ω′) = S+(ω′)S(ω′). Ĥ is symmetric and positive definite. (Sylvester’s law of inertia).

Then ĤAω
′
= (ĤAω

′
)+

Show it: ĤAω
′ − (ĤAω

′
)+ = S+SAω

′ − (Aω
′
)+S+S = S+(S(Aω

′
)S−1 − (S+)−1(Aω

′
)+S+)S =

11



S+(Λ− Λ+)S = 0

Consider the norm in Fourier space: ||Û ||2
Ĥ

=
∫
Û+ĤÛdω

Parseval-Plancherel identity (
∫∞
−∞ |f(x)|2 dx =

∫∞
−∞ |f̂(ω)|2 dω) & |Ts| condition guarantees that

this is a norm in physical space equivalent to L2. Compute time der:

∂t||Û ||2Ĥ =

∫ ∞
−∞

[Û+ĤAω
′
iÛ |ω| − i(Aω′Û)+ĤÛ |ω|]dω =

∫ ∞
−∞

i|ω|Û+[Ĥ(ω′)Aω
′ − (Ĥ(ω′)Aω

′
)+]Ûdω = 0

Norm is conserved! ⇒ System is well-posed! Note: source terms do not break the estimate.

Worst growth possible is exponential.

This is for linear, constant coefficient systems. Long way from GR. But: linearizing about an

arbitrary solution, these results carry over for local in time well-posedness. [Also FT2S!]

BREAK

Consider example: The ADM equations with fixed unit lapse and zero shift.

Equations of motion are: ∂tγij = −2Kij, ∂tKij = Rij +KKij − 2Ki
kKjk

First order reduction: ∂kγij = Φkij, so Rij ' −1
2
∂kΦ

k
ij + 2∂(iΦ

k
j)k − 1

2
∂(iΦj)k

k,

where ' means “up to lower order derivatives”.

So: ∂tγij ' 0, ∂tΦkij ' ∂kKij, ∂tKij ' −1
2
∂kΦ

k
ij + 2∂(iΦ

k
j)k − 1

2
∂(iΦj)k

k

This is a first order PDE system. We need to know the principal symbol, but the indices are a

pain. Therefore we make a convenient choice of variables, so that in the end we have to deal

with small matrices.

� Define: ⊥ij= δij − sisj (si is unit spatial vector)

� Linearize equations around flat space. (Write ηij for “metric” and use γij, Φkij, Kij for

the perturbations).

� γij is decoupled, so we can ignore it.

Choose: (A stands for transverse)

Φsss ≡ sisjskΦijk, Φsqq ≡ si ⊥jk Φijk, Φqqs ≡⊥ij skΦijk, ΦssA ≡ sisj ⊥kA Φijk, ΦqqA ≡⊥ij⊥kA Φijk

Kss ≡ sisjKij, Kqq ≡⊥ij Kij, KsA ≡ si ⊥jA Kij, ΦTF
sAB ≡ (⊥⊥ −1

2
⊥⊥)Φijk, KTF

AB ≡ ( )Kij,

Φ̃Aij ≡ remaining components of Φ

Now if we 2+1 split derivatives in si: ∂iU = sis
j∂jU+ ⊥ji ∂jU , then we can write:

Exercise: fill in as many of the missing steps you need to be convinced.
ŨA = (Φ̃Aij)

UTF
AB = (ΦTF

sAB, K
TF
AB)+

UA = (ΦqqA, ΦssA, KsA)+

Us = (Φqqs, Φsss, Φsqq, Kss, Kqq)
+

→


∂tŨA ' 0

∂tU
TF
AB = As(1)∂sU

TF
AB + “∂A derivatives′′

∂tUA = As(2)∂sUA + “∂A derivatives′′

∂tUs = As(3)∂sUs + “∂A derivatives′′

12



where

As(1) =

(
0 −2

−1
2

0

)
tensor block (GWs) ±1, complete set

As(2) =

 0 0 0

0 0 −2
1
2

0 0

 vector block 0, ±1, missing one eigenvector!

As(3) =


0 0 0 0 0

0 0 0 −2 0

0 0 0 0 −2

1 0 −1
2

0 0

0 0 −1
2

0 0

 scalar block 0, ±1, 0, 0, missing two eigenvectors!

Eigenvalues and eigenvectors? 5 minutes with Mathematica: ↑
Conclusion: ADM is only weakly hyperbolic (with this gauge and reduction)!

Why is this calculation unsatisfactory? (Besides the sad conclusion!)

1. Linearization? Is this ok?

2. Reduction? ∂kΦijl
?
= ∂iΦkjl → constraint!

3. Gauge choice? Might some other gauge be ok?

Still, this was ignored for ∼ 30 years. Is there a strongly hyperbolic formulation of GR?

Two main free evolution formulations in NR:

The Generalized Harmonic Gauge (GHG) Formulation

Consider the 4D Ricci tensor with Γa = gbcΓabc:

Rab ' −1
2 g

cd∂c∂dgab︸ ︷︷ ︸ + ∂(aΓb)︸ ︷︷ ︸ + lower order terms

“Like” wave operator
Contains second derivatives.

How can we get rid of this?

Note that Γa = −gab�xb, with xb local coords. So choose �xb = 0 (“harmonic coords”), then

Rab ' −1
2 g

cd∂c∂dgab︸ ︷︷ ︸ + lower order terms

This is just a wave operator, like in the wave equation! ⇒ The resulting system is strongly hyperbolic!

To be more formal: for �xb = 0 [= Hb(g, x) more generally], define constraint Za = −Γa
.

= 0:

13



Solve: Rab + ∂(aZb) ' −1
2
gcd∂c∂dgab + lower order terms

∂tZa = Hamiltonian and momentum constraint + ∂iZa terms.

If Zµ = 0 at t = 0 and constraints of GR satisfied → solution is solution to GR.

Generalized Harmonic Gauge (GHG) Formulation:

� symmetric hyperbolic

� all speeds are the light speed (up to first order reduction)

� well-posed IBVP

� finite difference or pseuspectral codes [codes: Pretorius, SpEC]

� Gauge: �xµ = Hµ 3+1⇒

{
∂tα = −α2(K + F ) + Lβα
∂tβ

i = α2Γi − α∂iα + F i + βj∂jβ
i

with F, F i free

� black hole excision, basic idea: cut BH region out of numerical domain inside of apparent

horizon, Boundary “should be” outflow ⇒ no bcs needed. Then move excision region or

carefully move coordinates.

“Moving-puncture” / Conformally Decomposed Formulations:

� BSSN/BSSNOK [0-speed mode], Z4c/CCZ4 [no 0-speed mode, better!]

� well-posed IVP since it’s strongly hyperbolic

� progress on well-posedness of IBVP, hard to implement.

� radiation controlling constraint-preserving boundary conditions implemented.

� finite differences (almost universally) [codes: Einstein Toolkit, BAM, Lean, NRPy+]

� “Moving-puncture” gauge:

{
∂tα = −2α2K + Lβα
∂tβ

i = µsΓ
i − ηβi + βj∂jβ

i
(can use for BNS spacetimes!)

� “Moving-puncture method” [wormhole vs. trumpet ID diagram], basic idea: singular

part of the back hole geometry is encoded in a spatial conformal factor. There’s a bad

point at the puncture, but clever choice of evolved varables makes point “manageable”

numerically. Puncture then advected around by the moving-puncture conditions.

14



3 Initial data - solving the constraints [Alcubierre]

In the 3+1 decomposition we arrived at evolution equations and constraints. We now have an

idea of how to make evolution equations “nice”. Need initial data! (12 DoF)

H = R +K2 −KijK
ij

Mi = Dj(Kij − γijK)

}
→ 4 eqs., but haven’t stated what to solve for, “not even posed”.

Issues? (i). Get good PDEs. (ii). Choose data to model physics we’re interested in. Earliest

approaches focused mostly in (i) and so will we.

York-Lichnerowicz conformal decomposition: What do we solve for?

γij = ψ4γ̃ij, with ψ the conformal factor and γ̃ij the conformal background metric - natural to

choose γ̃ = 1 (i.e. ψ4 = γ1/3), but not needed.

Plug into the Hamiltonian constraint:

D̃iD̃iψ −
1

8
ψR̃− 1

8
ψ5K2 +

1

8
ψ5KijK

ij = −2πψ5ρ (2)

with D̃i the covariant derivative and R̃ the Ricci scalar associated with γ̃ij. (2) is quasilinear

elliptic equation for ψ. Spatial metric γij naturally constrained.

Now onto the momentum constraint: Kij = Aij + 1
3
γij K

Tracefree Trace

Covariantly (in spatial slice) decompose Sij = (LX)ij+T ij, where Sij is symmetric tracefree, T ij

is symmetric, tranverse-traceless (DiT
ij = 0, T ii = 0), and (LX)ij = DiXj+DjX i− 2

3
γijDkX

k.

Sij: arbitr. sym. TF, T ij: TT part of Sij, (LX)ij: longitudinal part of Sij, conf. Killing form.

How to obtain an elliptic equation from this decomposition and momentum constraint? Two

options to construct L from, either use:

� Conformal metric (and associated covariant derivative).

� Physical metric (likewise).

Conformal transverse traceless decomposition

Define Aij = ψ−10Ãij, [Aij = ψ−2Ãij]. Take care about metric used!

Ãij = (L̃X)ij + Q̃ij, with (L̃X)ij, Q̃ij defined with respect to D̃i.

Momentum constraint: Dj(Ki
j − γijK) = 8πji

Substitute the previous definitions: ∆̃LX
i = 2

3
ψ6D̃iK + 8πψ10ji, with

∆̃LX
i ≡ D̃j(L̃X)ij = D̃jD̃jX

i +
1

3
D̃i(D̃jX

j) + R̃ijXj (3)

where you use DjS
ij = ψ−10D̃j(ψ

10Sij) and Q̃ij is transverse (D̃jQ̃
ij = 0).

Want to choose a method so that we choose a symmetric tracefree tensor, since “tranverse” is

differential and this is more of a pain. But: for Q̃ij = M̃ ij − (L̃Y )ij, M̃ ij is sym. TF tensor.

15



L̃ operator is linear, so: Ãij = (L̃V )ij + M̃ ij with V i = X i− Y i. ∆̃L also linear, so momentum

constraint with (3) becomes: ∆̃LV
i = 2

3
ψ6D̃iK − D̃jM̃

ij + 8πψ10ji

Summary: γij = ψ4γ̃ij, Kij = ψ−10Ãij + 1
3
ψ−4γ̃ijK, Ãij = (L̃V )ij + M̃ ij

∆̃LV
i − 2

3
ψ6D̃iK = −D̃jM̃

ij + 8πψ10ji, D̃iD̃iψ −
1

8
ψR̃− 1

12
ψ5K2 +

1

8
ψ−7ÃijÃ

ij = −2πψ5ρ

BREAK

Physical transverse traceless decomposition

Aij = (LW )ij +Qij, where Qij is transverse-traceless with respect to γij.

Momentum constraint: ∆̃LW
i+6(L̃W )ijD̃j(lnψ) = 2

3
D̃iK+8πψ4ji, where (LW )ij = ψ−4(L̃W )ij.

Again, it is annoying if the “free data” Qij has to satisfy a differential constraint.

So: Qij = M̃ ijψ−10 − (LZ)ij, Q is transverse. ⇒ ∆̃LZ
i = 6(L̃Z)ijD̃j(lnψ) = ψ−6D̃jM̃

ij.

Again: V i = W i − Zi. Total decomposition (summary):

γij = ψ4γ̃ij, Kij = ψ−4
(
Ãij + 1

3
γ̃ijK

)
, Ãij = (L̃V )ij + ψ−6M̃ ij

∆̃LV
i + 6(L̃V )ijD̃j(lnψ) =

2

3
D̃iK − ψ−6D̃jM̃

ij + 8πψ4ji, ∆̃ψ − 1

8
ψR̃− 1

12
ψ5K2 +

1

8
ψ5ÃijÃ

ij = −2πψ5ρ

Both conformal and physical TT-decompositions give a method for the constraints - but how

are we supposed to choose data to represent a particular physical scenario? We could:

� Simplify the form of the constraints with careful assumptions.

� Expand system to solve with “easier” given data. Start here.

Conformal thin sandwich (CTS) equations [York’99]

→

“Thin sandwich”, old ap-

proach of ’60’s, Misner (et al.).

Choose u̇ for some variables, instantaneous

control of dynamics.

ũij = ∂tγ̃ij, with γ̃ij is conformal metric like before. Choose

γ̃ijũij = 0 (4)

[ ˙̃γ = 0 at t = 0, volume element of the metric is momentarily fixed].

Now write

uij = ∂tγij −
1

3
γij(γ

kl∂tγkl) (5)

= −2αAij + (Lβ)ij with same L we had before.
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Exercise: (i): (4)⇒ ∂t lnψ = ∂t(ln γ
1/12), (ii) ⇒ ũij = ψ−4uij

Now work from (5): Aij = 1
2α

[
(Lβ)ij − uij

]
= ψ−4

2α

[
(L̃β)ij − ũij

]
,

Same conformal transformation

Ãij = 1
2α̃

[
(L̃β)ij − ũij

]
and conformal lapse α̃ = ψ−6α with Ãij = ψ10Aij like before.

Hamiltonian constraint: 8∆̃ψ − ψR̃ + ψ−7ÃijÃ
ij − 2

3
ψ5K2 + 16πψ5ρ = 0 [as before].

Momentum constraint: D̃j

[
1

2α̃
(L̃β)ij

]
− D̃j

[
1

2α̃
ũij
]
− 2

3
ψ6D̃iK − 8πψ10ji = 0.

Construction of initial data: solve for ψ, βi, then: γij = ψ4γ̃ij, K
ij = ψ−10Ãij + 1

3
γijK,

Ãij = 1
2α̃

[
(L̃β)ij − ũij

]
. [Everything else is given].

Extended conformal thin sandwich:

In the last approach we had ũij ∼ ˙̃γij as given data, but introduced α̃. ũij we like, as it has an

obvious physical interpretation. α̃? Less clear perhaps. But we could note

∂tK = βi∂iK −∆α + α
[
AijA

ij + 1
3
K2
]

+ 4πα(S + ρ)

with ∆α = ψ−4[∆̃α + 2γ̃ij∂iα∂j(lnψ)] then [algebra] ⇒
∆̃α̃+α̃

[
3
4
R̃− 7

4
ψ−8ÃijÃij + 1

6
ψ6K2 + 42D̃i(lnψ)D̃i(lnψ)

]
+14D̃iα̃D̃

i lnψ+ψ−2(∂tK−βi∂iK)−
4πα̃ψ4(S + 4ρ) = 0

Now can choose ∂tK and K [in case you have better intuition for them].

We want to bash BHs together! How? → Simplify equations to put them in tractable form.

BREAK

Recap CTT: γij = ψ4γ̃ij, Kij = ψ−10Ãij + 1
3
ψ−4γ̃ijK, Ãij = (L̃V )ij + M̃ ij

∆̃LV
i − 2

3
ψ6D̃iK = −D̃jM̃

ij + 8πψ10ji, D̃iD̃iψ −
1

8
ψR̃− 1

12
ψ5K2 +

1

8
ψ−7ÃijÃ

ij = −2πψ5ρ

Multiple black hole initial data

Time symmetric data: Take Kij = 0, then Mi = 0 (in vacuum).

Hamiltonian constraint becomes: 8∆̃Ψ− R̃ψ = 0.

Choose γ̃ij = δij flat, spatial metric is “conformally” flat ⇒ ∆̃ψ = D2
flatψ = 0 → Laplace eq.

Solution? ψ = 1 + M
2r

, with d̃s
2

= dx2 + dy2 + dz2 and r2 = x2 + y2 + z2, for M = 0 flat space.

In spherical coords: ds2 =
(
1 + M

2r

)4
[dr2 +r2dΩ2]→ spatial metric of Schwarzschild in isotropic

coords & standard time slice.

Next solution (Laplace eq is linear): ψ = 1 +
∑N

i=1
Mi

2|~r−~ri| : N black holes intially at rest, Mi

“bare masses”, ψ →∞ as r → ri. Solution known as →

Brill-Lindquist (initial) data:

Recall Schwarzschild:
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i+

i−

i0

I +

I −

i+

i−

i0

I +

I −

R = 0

R = 0

→

Take the blue slice.

↓
Embedding diagram

with two

asymptotically flat

ends.

→

→

N+1 asymptotically flat ends - should

we worry about the other ends? ri are

not really part of the manifold, known

as “punctures” (hidden inside of their

horizons).

Brill-Lindquist data:

� May correspond to a BBH is the coordinate separation is large enough.

� Not very relevant for GW astro or astrophysics: BHs are stationary initially (not orbiting).

� Time symmetry is too restrictive! → Give the BHs linear momentum and spin.

Bowen-York extrinsic curvature: Solving the momentum constraint:

Consider the momentum constraint in conformal tranverse traceless decomposition:

∆̃LV
i −2

3
ψ6D̃iK = −D̃jM̃

ij + 8πψ10ji

Choose γ̃ij = δij,

“conformally flat”.
→ 0 for maximal slicing. → 0 for free data. → 0 in vacuum.

Let’s make these solvable. Start with: ∆̃LṼ
i = ∆Ṽ i + 1

3
D̃iD̃jṼ

j = 0 both terms are flat.

Use Cartesian coords: linear, constant coefficients!

(Bowen&York (again)): Ṽ i = − 1
4r

[7P i + ni(njP
j)] + 1

r2
εijknjSk, where P i, Si are constant vec-

tors, εijk is the Levi-Civita compatible with γi, n
i is the outward pointing unit radial vector.

In vector notation: ~̃V = − 1
4r

[
7~P + ~n(~n · ~P )

]
+ 1

r2
(~n× ~S)

Conformal extrinsic curvature:

Ãij = (L̃Ṽ )ij = 3
2r2

[niPj + njPi + (nkP
k)(ninj − δij)]− 3

r3
(εilknj + εjlkni)n

lSk

Kij = ψ−2Ãij → Bowen-York extrinsic curvature

Physical iterpretation: P i → ADM linear momentum [at spatial infinity]; Si → angular

momentum (spin) [at spatial infinity] (not really well defined ...)
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“Puncture” initial data:

Now we have an analytic solution for the momentum constraint that represents something like

a boosted and/or spinning particle [or several]. What about Hamiltonian constraint? Analytic

solution? No such luck ...

∆ψ + 1
8 ψ−7︸︷︷︸ ÃijÃij = 0. As r →∞ we want ψ ≈ 1 + M

2r
, can take this as bc.

Flat Curse!

How can we generalize the Brill-Lindquist initial data?

ψ = ψBL +u

Ansatz
ψBL =

∑N
i=1

Mi

2|~r−~ri|
Brill-Lindquist as before

correction

Solve for u: ∆u+ η
(

1 + u
ψBL

)−7

= 0, with η = 1
8ψ7
BL
ÃijÃij. BC? u→ 1 at ∞.

What about as ~r → ~ri? Do we need bc’s there? No:

ψBL ∼
1

|~r − ~ri|
, ÃijÃij ∼

{
1

|~r−~ri|6 Spin
1

|~r−~ri|4 No spin
⇒ η ∼

{
|~r − ~ri| Spin

|~r − ~ri|3 No spin

What about
(

1 + u
ψBL

)
? (u finite, but ψBL blows up). Regular (and ∆u ∼ 0 near puncture).

But we need to show that there are solutions. Brandt & Brügmann: there are unique C2

solutions → we can ignore the punctures when solving for u.

This is the data that most numerical relativists have been using in applications since 2005.

Its accurate numerical solution (with spectral methods) was pioneered by Brügmann, Ansorg,

Tichy.

Summary of puncture data:

Strengths:

� Analytic solution for momentum constraint.

� (Partial) Control over physical setup.

� Can be solved really accurately.

Weaknesses:

� No conformally flat slice for Kerr.

� “Junk” radiation: initial data are a spinning BH with radiation.

� Assumptions that are math good are not necessarily physically good.

Further physically relevant improvements:

� Initial data with higher spins: metric cannot be conformally flat → cannot use Bowen-

York extrinsic curvature and have to solve 4 coupled elliptic equations.
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� Eliminate eccentricity: tune initial parameters by running first orbit until eccentricity is

small enough.
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4 Apparent horizons

(What we will not talk about:)

Event horizons:

The true definition of a black hole or a black region is the following. Take an asymptoticaly flat

spacetime. (Various definitions of this, but future null infinity is a common feature). Consider

the complement of the past of future null infinity. This region, if it exists, is called the black

hole region. The boundary of the BH region is the event horizon (EH).

We avoid this (when possible) in NR. Why? → The definition is global!

This means that we are required (in principle) to search the whole of spacetime for the EH.

Painful. Standard approach: compute a spacetime and look for EH in postprocessing. Requires

lots of output. → Reading 4D data. → Interpolation in space and time. Horrible!

1. Evolve until the final BH has settled down.

2. EH is attractor for null geodesics propagating backwards in time.

3. Find EH via backward in time integration of null surfaces (null geodesics enough in

spherical symmetry).

4. Null version of the Raychaudhuri equation is suitable to null geodesic congruences.

i0

EH

BH region

I +

Σt

Past of I +

Enter the apparent horizon (AH):

Think of a sphere at a particular instant of time (intertial) in Minkowski spacetime. Consider

what happens to the area of the sphere if we expand it along an outward pointing null vector

field. → Use this idea to characterize BH region.

Σt
45◦

Area increases
(shoot inwards

and it decreases).

45◦45◦

Consider a topological sphere in some other spacetime, again at some instant of time (defined

by some time coordinate).

If when we track the area of the sphere along an outward pointing null vector it decreases we
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say that the region inside the sphere is trapped.

If the area is constant under this operation, the surface is called “marginaly trapped”. The

outermost marginally trapped surface (MOTS) (if it exists) is called the apparent horizon.

AH’s crucial in proofs of “singularity” theorems.

Clearly this is intuitively consistent with ‘nothing escaping’, but what is the relationship be-

tween the EH & AH?

EH
Trapped region

AH

� Assume cosmic censorship. [Big assumption].

� If there is an AH, it must lie inside a spatial slice of the EH.

Is the AH “just as good” as the EH?

No! “Absence of proof is not proof of absence”.

� AH depends on spatial slice. Not 4-covariant.

� If you take a weird slice, there may be no AH even in a BH spacetime.

� This can be done even in Schwarzschild. {Wald-Iver}

Mathematical details:

Consider a closed 2D surface S inside a spatial slice Σt. sa is spatial unit outward normal

vector. na is timelike unit normal to Σt.

Outgoing null vector: la = na + sa.

2-metric in S: qab = gab + nanb − sasb = γab − sasb

Expansion of null-geodesics: Θ = +1
2
qabLlqab = +1

2
qab
(

(1)

Lsqab +
(2)

Lnqab
)

Σt S sa

na
la

Meaning? Compare with 3+1 split:

The time derivative of volume form: Ln
√
γ = −√γK → here area form, but same idea.

(Lsqab = 2Xab, X extrinsic curvature of S as embedded in Σt. q
abLsqab = 2X).
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But: Lsqab = scDc(γab(→ 0)− sasb) + 2qc(aDb)s
c ⇒ qabLsqab = 2Das

a (1)

Now the other term: (2) qabLnqab = −2qabKab − qabLn(sasb)(→ 0)

⇒ Θ = Dis
i −K +Kijs

isj (6)

Equivalent way: Θ = qab∇alb = qab∇a(sb + nb) = qab(Dasb −Kab) = Das
a − (γab − sasb)Kab

Definition of AH? Outermost S with Θ = 0.

“Minimal surface”? Same, with Kij = 0. AH can coincide with minimal surface in this case.

How can we characterize / search for the AH?

Level set approach: Suppose AH (in Σt) is a level set of F (xi). Normal vector: si = DiF
u

, with

u2 = γij(DiF )(DjF ).

(6) ⇒ Θ = (γij − u−2(DiF )(DjF ))(u−1DiDjF −Kij).

Given a slice γij, Kij, how can we determine if there is an AH or not?

Examples:

(i) spherical symmetry: ds2 = Adr2 + r2BdΩ2, si = (A−1/2, 0, 0)T

(6) ⇒ Θ = 1√
A

(
2
r

+ ∂r lnB
)
− 2Kθ

θ = 0. (Algebraic relation).

If this holds, then we have an apparent horizon. E.g: Schwarzschild:

Kθ
θ = 0, A =

(
1− 2M

r

)−1
, B = 1 ⇒ AH condition: 2

r

√(
1− 2M

r

)
= 0⇒ r = 2M

(ii) axial symmetry: Solve an ODE. Take F (r, θ) = r − h(θ), however beware: horizon as-

sumed to be a strahlkörper (ray-body, with rays from the centre intersecting the surface

only once).

(iii) “Full” 3D: Various methods, see Living Review of Thornburg. Here: Flow method.

Basic idea:

� Introduce an unphysical time λ.

� Make some guess.

� Then ∂λx
i = −Θsi.

� When ∂λx
i = 0 we have an AH.

Ex: Check in Schwarzschild that the “-” sign is the right way around.

Writing surfaces as F (xi, λ) = 0. d
dλ
F (xi, λ) = ∂λF + dxi

dλ
DiF = 0.

By Flow equation: ∂λF = ΘsiDiF ⇒ ∂λF = |DF |Θ, since si = DiF
|DF | .

Now: Taking F = r − h(θ, ϕ) ∂λh = −|D(r − h)|Θ. Parabolic type equation.

� Method is slow.

� Optimization is possible.

� Often “direct” solve still faster.
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5 Relativistic hydrodynamics

� Most astrophysical systems involve matter sources, which need to be modelled! Fluid

approximation: matter is a continuum. “Infinitesimal” fluid element contains many par-

ticles.

� Here (follow Alcubierre/most NR groups) Eulerian approach: fix coordinate system (3+1

coordinates). Describe motion in these coordinates.

Special relativistic hydrodynamics

Stress energy tensor (for a perfect fluid: zero viscosity and no heat conduction):

Tµν = (ρ+ p)uµuν + p ηµν , p = 0 “dust”.

uµ: 4-velocity of fluid elements; ρ: energy density, p: pressure (as measured in fluid rest frame).

ρ = ρ0(1 + ε), with ρ0: rest mass density and ε: specific internal energy (per unit mass).

Specific enthalpy: h = 1 + ε+ p
ρ0

, “Total energy to do work per unit mass.”

This gives: Tµν = ρ0huµuν + p ηµν .

It’s common to write: ρ0 = n M , with n: number density and M : rest mass of fluid particles.

Notice that ρ above is not “ρ” we had before in the ADM decomposition:

ρADM = nµnνTµν = ρ0h(uµn
µ)2 − p = ρ0hW

2 − p,
where we introduced W ≡ −uµnµ = u0, because in Minkowski (intertial frame) nµ = (−1,~0).

Note that nµ 6= uµ in general. uµu
µ = −1 holds and implies W = (1 +

∑
i(u

i)2)
1/2

.

But vi = ui

u0
standard 3D speed of the fluid, from which we conclude that W = (1− v2)−1/2 is

the Lorentz factor.

ρ = ρADM when local coordinates follow fluid elements (Lagrangian approach).

(Is this always possible?) Note: choosing uµ = nµ, even in Minkowski is not possible if you

want

(
−1 0

0 1

)
as the metric.

Variables: (ρ0, ε, p, v
i) → 6 primitive variables

Equations:

{
∂µ(ρ0u

µ) = 0 Conservation of particles → 1 eq.

∂µT
µν = 0 Conservation of energy-momentum → 4 eqs.

}
5 equations

Need one more equation: Equation of state: p = p(ρ0, ε)

Let’s get the equations of motion:

D = ρ0W : rest mass density as seen in Eulerian frame ⇒ ∂tD + ∂k(D vk) = 0

Continuity equation (from Conservation of particles)

Define: Sµ := ρ0hWuµ; spatial comp. Si = ρ0hW
2vi: momentum density in Eulerian frame.

From T νµ = Sµuν

W
+ pδνµ → ∂tSi + ∂k(Siv

k) + ∂ip = 0 Euler equations,

momentum can change because of flow of momentum “∂k( )” and force of pressure “∂ip”.

One equation missing! Define: E = ρADM −ρ0W = ρADM −D = ρ0hW
2− p−D, the difference

24



between total energy density and mass energy density as measured in Eulerian frame. (This

variable chosen, because it allows to find an equation in balance law form).

Notice S0 = ρ0hW
2 = E+D+p. From the conservation of energy: 0 = ∂µT

µ0 = ∂µ

(
S0uµ

W
+ p ηµ0

)
⇒ ∂tE + ∂k[(E + p)vk] = 0.

Summary:

Conserved

variables:


∂tD + ∂k(D vk) = 0

∂tSi + ∂k(Siv
k) + ∂ip = 0

∂tE + ∂k[(E + p)vk] = 0

Relation to

“primitive” variables:


D = ρ0W

Si = ρ0hW
2vi

E = ρ0hW
2 − p− ρ0W

Valencia Formulation (1994)

A word on thermodynamics: [Still SRHD]

Consider contraction uµ∂νT
µν = 0 ⇒ uµ∂µp − ρ0u

µ∂µh = 0 (used uµ∂νu
µ = 0 from

conservation of particles). But h = 1 + ε+ p
ρ0

⇒ dε

dτ
+ p

d

dτ

(
1

ρ0

)
= 0, where d/dτ = uµ∂µ (7)

Local first law of thermodynmics. Why?

Fluid element
· Rest mass M.
· Internal energy U.
· Volume V.

 ρ0 = M
V

⇒ dV = M d
(

1
ρ0

)
ε = U

M
⇒ dU = Mdε

(M constant)

First law: dQ = dU + p dV = M

[
dε+ p d

(
1

ρ0

)]

Heat loss/gain. Change in internal energy. “Mechanical” work done.

But dQ = 0 (perfect fluid: no vicosity, no heat conduction). → No heat conduction!

N.B. dQ = TdS “Entropy preserved along flow lines” (for perfect fluid).

So (7) above is just this relation along the flow.

General relativistic hydrodynamics: Generalization easy!!

Perfect fluid stress-energy tensor: Tµν = ρ0huµuν + pgµν (with 4-metric)

“Specific enthalpy” (again): h = 1 + ε+ p
ρ0

Equations:
∇µ(ρ0u

µ) = 0

∇µT
µν = 0

}
. Remember → ∇µξ

µ = 1√
−g∂µ(

√
−g ξµ), so rewrite: ∂µ(

√
−g ρ0u

µ) = 0 Conservation of particles. Still total divergence.

∂µ(
√
−g T µν ) = √

−g ΓαµνT
µ
α

] Conservation of energy and momentum.

“Divergence-like term”. “Connection from downstairs indices”.
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Now use 3+1 language: g = −α2γ, W = −nµuµ = αu0 Lorentz factor.

Define: vi = ui

W
+ βi

α

[
= 1

W
⊥ia ua

]
“Speed of fluid as seen by Eulerian observers”.

D = ρ0W : ∂t(
√
γD) + ∂k[

√
γD(αvk − βk)] = 0 Conservation of particles.

Sµ = ρ0hWuµ: ∂t(
√
γSi) + ∂k{

√
γ[Si(αv

k − βk) + αpδki ]} = α
√
γΓµνiT

ν
µ with T µν = uµSν

W
+ pδµν .

“Conservation of momentum”. Γµνi part due to “Gravitational forces”. GR Euler equations

Finally: E = ρ0hW
2 − p−D: → Algebra →

∂t(
√
γE) + ∂k{

√
γ[E(αvk − βk) + αpvk]} = α2√γ(T 0µ∂µ lnα− Γ0

µνT
µν)

Conserved: (D,Si, E), Primitive: (ρ0, ε, p, v
i),

related by: D = ρ0W , Si = ρ0hW
2vi, E = ρ0hW

2 − p−D

Finally: ρADM = E +D, jiADM = Si, SADMij = ρ0hW
2vivj + γijp

“Above is the form normally treated numerically”. Here we still have stuff like Γµνi.

Notice the the flux-balance law form, convenient because these equations have non-smooth

(shock) solutions, and there are special methods for flux-balance equations to deal with that.

Let’s write it in 3+1 language properly: → Algebra → We obtain:

∂tD +Dk(αDv
k) = αKD + LβD

∂tS
i +Dk[α(Sivk + γikp)] = αKSi − (E +D)Diα + LβSi

∂tE +Dk[αv
k(E + p)] = (E + p)[αvivjKij − viDiα] + αK(E + p) + LβE

Notice: traded out “∂t
√
γ” terms to get “Lβ” on RHS.

Equations of state:

We have 5 equations for 6 unknowns. Need EOS: p = p(ρ0, ε)

{
ρ0 : Rest mass energy density

ε : Specific internal energy

Key question: how does the EOS affect GWs?

Models: Since EOS not known, and for numerical simplicity need models / simple forms.

� Easiest choice: Dust: p = 0

– Oppenheimer-Snyder collapse.

– Non-uniform flow results in “shell crossing” singularities (simple shock formation).

– Cannot make stars — nothing to hold them up!

� More realistic: Ideal gas EOS: p = (γ − 1)ρ0ε, with γ the adiabatic index (not detγij).

This follows from
p V = n k T (8)

Pressure Volume
Number of

particles

Boltzmann

constant
Temperature
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Start with the first law: dU(S, V ) = TdS−p dV and identify T =
(
∂U
∂S

)
V

and p = −
(
∂U
∂V

)
S
.

Perform a change in derivatives in an equivalent way to a coordinate change:

from S, V to T, V̄ . Relations between coordinates: V̄ = V, T = T (S, V ) so that(
∂
∂V̄

)
T

=
(
∂V
∂V̄

)
T

(
∂
∂V

)
S

+
(
∂S
∂V̄

)
T

(
∂
∂S

)
V

, where we set
(
∂V
∂V̄

)
T

= 1 from the coordinate

change. Apply on U and use the Maxwell relation
(
∂S
∂V

)
T

=
(
∂p
∂T

)
V

:(
∂U
∂V̄

)
T

=
(
∂U
∂V

)
S

+
(
∂S
∂V

)
T

(
∂U
∂S

)
V

= −p+ T
(
∂p
∂T

)
V

= (using (8)) = −p+ T nk
V

= 0

Thus U = U(T ).

Introduce the specific heats at constant volume and constant pressure respectively:

cV =
1

M

(
TdS

dT

)
V

=

(
dU

dT

)
with cp = cV γ

cp =
1

M

(
TdS

dT

)
p

First Law
=

1

M

[
dU

dT
+ p

(
∂V

∂T

)
p

]
= cV

(
1 +

nk

McV

)

So γ =
(

1 + nk
McV

)
. If cV is constant, then U = M cV T : γ − 1 = nk

McV
= nkT

U
= pV

U
.

Isolating the pressure: p = (γ − 1)U
V

= (γ − 1)ρ0ε.

This model can support stars and is often used.

� Polytropic EOS: p = KρΓ
0 = Kρ

1+1/N
0 , with N : constant, polytropic index, Γ: constant,

“adiabatic index of polytrope”. Careful! not necessarily γ.

Consider an adiabatic process (dQ = 0, no heat transfer) for the ideal gas.

From first law: 0 = dε+ p d
(

1
ρ0

)
= 1

γ−1
d
(
p1
ρ0

)
+ p d

(
1
ρ0

)
, which implies dp

p
= γ dρ0

ρ0
→

integrate to p = Kργ0 with K some constant. Only in adiabatic process involving an ideal

gas Γ = γ. However, polytrope is used even when there is heating and is a common choice

in simulations. Popular modifications are “piecewise polytropic EOS”, where different

pieces are glued together to interpolate some desired EOS (from tables).

Astro/numerical comments:

� Basic influence of EOS on GWs? Stiffer (higher p) HMNS ‘merger remnant’ survives

longer before it collapses to a BH. → Complicated waveforms! We hope that in the

future this will constrain EOS by observations of GWs.

� Scale invariance gone: NS mass is ≤ 2M�.

� Numerical work is harder: shocks mean accuracy necessarily worse at same computational

cost, and slow convergence. Better methods / PDE understanding desired.

Hyperbolicity and the speed of sound

Hyperbolicity depends on EOS, but it’s generally fine. Causality is used to rule out some EOSs.

Idea: write system as ∂µF
µ(u) = s(u), with F the fluxes and u the variables. Strongly hy-

perbolic? Construct Jacobian matrices Aµij =
∂Fµi
∂xj

and consider arbitrary vectors ξµ and ζµ

satisfying ξµξ
µ = −1, ζµζ

µ = 1, ξµζ
µ = 0.
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System is strongly hyperbolic if the matrix Aµξµ is invertible (i.e., non-zero determinant) and

the principal symbol As = (Aµξµ)−1(Aµζµ) has real eigenvalues and complete set of eigenvectors

[+ technical conditions].

Choose as main variables u = (ρ0, v
i, ε):

fluxes along the time direction are F 0
1 = D, F 0

i+1 = Si, F 0
5 = E , and along

the x direction are F x
1 = (αvx−βx)D, F x

i+1 = (αvx−βx)Si+αγxip, F x
5 = (αvx−βx)E +αpvx.

→ Algebra →
System is strongly hyperbolic, with 5 eigenvalues: λ0 = −βx + αvx [multiplicity 3],

λ± = −βx+ α
1−v2c2s

{
vx(1− c2

s)± cs
√

(1− v2)[γxx(1− v2c2
s)− (vx)2(1− c2

s)]
}

, with v2 = γijvivj.

The local speed of sound (speed at which density perturbations travel as seen in the fluid’s ref-

erence frame) is defined as c2
s = 1

h

(
χ+ p

ρ20
κ
)

, where χ = ∂p/∂ρ0 and κ = ∂p/∂ε.

Weak solutions and the Riemann problem: For linear hyperbolic systems, smooth data stays

smooth, so that non-smooth data will “just” propagate. Not true for non-linear systems!

Burgers equation: ∂tu + u∂xu = 0 (strong form). An advection equation, but the speed is the

solution. The wave “breaks”. The solution exists only for finite time.

x

t = 0 t =later t = tshock

This happens in the Euler equations. It means that the fluid model (vanishing viscosity) breaks

down. But we want to keep using them, so work with “integral form” of conservation law:

∂tu+ ∂xF (u) = 0 →
∫∞

0

∫∞
−∞ φ(∂tu+ ∂xF (u))dx dt = 0 ⇒∫∞

0

∫∞
−∞(u∂tφ+ F∂xφ)dx dt = −

∫∞
−∞ φ(x, 0)u(x, 0)dx.

u is a weak solution if the previous equations holds for ∀φ. Try to understand these solutions.

Riemann problem: Example: Burgers equation with u(x, 0) =

{
uL x < 0

uR x > 0

(1): With uL > uR: there is a unique weak solution with speed s = (uL + uR)/2. Generally

speed is s = [F ]
[u]

, where [ ] = “jump in”. Solution is a shock wave.

Rankine-Hugonot jump condition: governs conservation laws across discontinuities.

(2): With uL < uR: the weak solution is not unique. Burgers: u(x, t) =


uL x < uLt

x/t uLt ≤ x ≤ uRt

uR x ≥ uRt
Solution is an interpolating solution, a rarefaction wave.

How do we choose the “physical solution”? Entropy conditions. [Stable solution]

These ideas can be generalised to systems.

� Work with strong-form PDEs. Use entropy conditions to choose physical “weak” solution.

� Use numerical methods (HRSC = “high-resolution shock capturing”) that naturally avoid

computing derivatives across discontinuities.
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Electromagnetohydrodynamics [based on Shibata’s Numerical Relativity, sec. 4.6]:

Electric and magnetic fields Ea, Ba (spatial – on Σt, naE
a = naB

a = 0) and electric current ja.

Antisymmetric electromagnetic tensor: F ab = 2n[aEb] + εabcBc, with εabc 3-Levi-Civita tensor

(= ndεdabc). Thus Ea = F abnb, B
a = 1

2
εabcFbc.

Current decomposed as ja = ρen
a + j̄a, with ρe := −naja the electric charge density defined on

Σt and j̄a = γab j
b the electric current vector on Σt.

Maxwell’s equations: ∇aF
ab = −4πjb, ∇[aFbc] = 0. Different ingredients:

� Continuity equation for electric charge: ∇aj
a = 0 → evolution equation for ρe.

∂t(
√
γρe) + ∂k(

√
γ[αj̄k − ρeβk]) = 0

Ohm’s law: ja + (jbub)u
a = σcF

abub, with σc conductivity (=∞ for ideal MHD). Take j̄a

and put in equation above:

∂t(
√
γρe) + ∂k(

√
γρev

k) = σc∂k
{√

γ[(vk + βk)Ejuj − α(W Ek + εkijuiBj)]
}

� Constraint equations: Gauss law: DaE
a = 4πρe, in coord basis: ∂k(

√
γEk) = 4π

√
γρe

and no-monopole constraint: DaB
a = 0, in coord basis: ∂k(

√
γBk) = 0

� Evolution equations for Ei and Bi (Ampère-Maxwell’s law and Faraday’s law):

∂tE
i − LβEi = αKEi −Dk(αε

kijBj)− 4παj̄i

∂tB
i − LβBi = αKBi +Dk(αε

kijEj)

}
3+1 language

∂t(
√
γEi) = −∂k[

√
γ(2β[iEk] + αεkijBj)]− 4π

√
γ(αj̄i − βiρe)

∂t(
√
γBi) = −∂k[

√
γ(2β[iBk] − αεkijEj)]

}
Conservative form

Now the energy-momentum tensor has 2 parts: Tab = THD
ab +TEM

ab (with THD
ab = ρ0huaub + pgab)

and TEM
ab = 1

4π

(
FacFb

c − 1
4
gabFcdF

cd
)

= 1
4π

[
EaEa+BaBa

2
(γab + nanb)− EaEb −BaBb + 2n(aεb)cdE

cBd
]
.

The 3+1 decomposition of Tab in the Einstein equations will now have hydrodynamical and elec-

tromagnetic terms. From above we have that ∇bTEMab = −Fabjb.
Conservation of energy-momentum yields: ∇bTab = 0 = ∇bTHDab +∇bTEMab ⇒ ∇bTHDab = Fabj

b,

where the electromagnetic forces act as source. Two options:

� Treat electromagnetic force as external force and write only fluid part in conservative

form. Conservation of total momentum and energy not guaranteed. Shocks not accurately

captured (electromagnetic speeds not taken into account in the advection terms).

� Fully conservative form. Commonly used for MHD.

Ideal magnetohydrodynamics:

Conductivity σc = ∞ → require F abub = 0. This implies that the electric field in the frame

comoving with fluid vanishes and Ei = − 1
W
εijkujBk, so Ei is obtained from Bi – no need to

evolve Ei! Solve the conservative form of the ideal magnetohydrodynamics equations.

MHD important for the description of jets and electromagnetic counterparts.

Not covered here: radiation transfer (Boltzmann’s equation, momentum formalism, leakage

scheme) → neutrinos, microphysics (electron fraction), ...
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6 Gravitational wave extraction

Boundary of numerical domain

Compact

objects

“Strong-field” region

Emitted waves carry

energy and momentum.

Gravitational waves (GWs):

� Perturbations of spacetime travelling at the speed of light.

� Interferometers need waveforms [matched filtering].

� GWs not raw output of numerical simulations.

How can we read them off? Two main methods:

� Perturbations of

– Schwarzschild → Regge-Wheeler-Zerilli equations.

– Kerr → Teukolsky equation.

� Newman-Penrose formalism. More popular! We will only discuss this.

The Weyl tensor: Cabcd = (n)Rabcd − 2
n−2

(
ga[c

(n)Rd]b − gb[c(n)Rd]a

)
+ 2

(n−1)(n−2)
ga[cgd]b

(n)R

� Its expression depends on the number of spacetime dimensions n (for us here n = 4).

� n(n + 1)(n + 2)(n − 3)/12 = 10 indep. comp. → same symmetries as Riemann, and

tracefree.

� Conformally invariant C̃a
bcd = Ca

bcd, under gab → g̃ab = Ω2gab.

Bianchi identities: ∇aC
a
bcd = ∇[cRd]b + 1

6
gb[c∇d]R = 8π

[
∇[cTd]b + 1

3
gb[c∇d]T

]
(same structure as the Maxwell equations)

Electric part: Ecd = nanb Cacbd

Magnetic part: Bcd = nanb ∗Cacbd

}
with

{
na arbitrary timelike unit vector and
∗Cabcd = 1

2
εcd

efCabef the dual Weyl tensor.

Compare to electromagnetism: electric nbFab = Ea and magnetic nb∗Fab = Ba fields, with
∗Fab = −1

2
εab

cdFcd and εabcd the 4D Levi-Civita tensor.
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Eab and Bab are spacelike, nbEab = nbBab = 0, due to the symmetry of Weyl.

Eab and Bab are symmetric and tracefree → 10 independent components (like Weyl), 5 each.

Cabcd = 2
[
la[cEd]b − lb[cEd]a − n[cBd]eε

e
ab − n[aBb]eε

e
cd

]
, with lab = gab+2nanb and εabc = ndεdabc.

3+1 language: using field equations of GR [in vacuum]

Eij =
[
Rij +KKij −KikK

k
j

]TF
, Bij = ε(i|

klDkKl|j) (9)

Eij and Bij satisfy equations analogous to the Maxwell equations namely:

DjEij = BjkK
j
l ε
kl
i, D

jBij = −EjkKj
l ε
kl
i,

and propagating like Maxwell, with acceleration ak = Dk lnα and εabc the spatial Levi-Civita:

∂tEij = LβEij + α[DkBl(iεj)
kl − 3Ek

(iKj)k +KEij − εiklεjmnEkmKln + 2akBl(iεj)
kl]

∂tBij = LβBij + α[−DkEl(iεj)
kl − 3Bk

(iKj)k +KBij − εiklεjmnBkmKln − 2akEl(iεj)
kl]

Newman-Penrose null tetrads:

Supose we have an orthonormal tetrad (eA)a, with A tetrad label and a vector label.

(eA)a(eB)bgab = ηAB, with ηAB a constant matrix diag(−1, 1, 1, 1).

(e0)a = timelike unit vector

(e1)a = asymptotically radialy outward unit vector

}
→ Build null tetrad!

la = 1√
2

((e0)a + (e1)a)

ka = 1√
2

((e0)a − (e1)a)

ma = 1√
2

((e2)a + i(e3)a)

m̄a = 1√
2

((e2)a − i(e3)a)



Null tetrad: lala = kaka = mama = m̄am̄a = 0,

laka = −mam̄
a = −1, other contractions vanish.

Note: large (6 parameters) freedom in choice of tetrad.

We can use the null tetrad as a tensor basis.

Let’s use it to decompose the Weyl tensor.

The Weyl scalars:

Ψ0 = Cabcdl
amblcmd, Ψ1 = Cabcdl

akblcmd, Ψ2 = Cabcdl
ambm̄ckd, Ψ3 = Cabcdl

akbm̄ckd,

Ψ4 = Cabcdk
am̄bkcm̄d → 5 complex scalars (10 components of Weyl).

In terms of electric and magnetic parts: Qij = Eij − iBij, Ψ4 = Qijm̄
im̄j, ... , Ψ0 = Qijm

imj.

Ψ4: outgoing GWs (far from source). (Ψ0: ingoing GWs).

Classic expectation: Peeling: far from isolated source: Ψn ∼ 1
r5−n

(depends on notion of

isolated). (Side note: the Petrov classification of spacetimes depends on relations between ΨA).

In NR we can use (9) and construct ΨA by contraction with la, ka, ma, m̄a, which we have to

build. Like la = 1√
2
(na + sa), for example.

Why should we bother? What physics does it tell us?

Energy and momentum of GWs:

Recap of GWs: in vacuum, linearize around flat space hµν = h+A+
µν + h×A×µν (+ polarization

+ × polarization), with �h+ = 0, �h× = 0, and Aµνl
µ = 0, Aµνn

µ = 0, Aµµ = 0 and la null and

na timelike. h are the amplitudes and Aµν the constant symmetric polarization tensors.

Considering plane waves (in TT gauge) outgoing in r: h = h(r − t), ∂rh = −∂th. →
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Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0, Ψ4 = −1
4
(∂2
t h

+ − 2∂t∂rh
+ + ∂2

rh
+) + i

4
(∂2
t h
× − 2∂t∂rh

× + ∂2
rh
×)

Ψ4 = −ḧ+ + iḧ× = −Ḧ with H = h+− ih×. Thus ⇒ H = −
∫ t
−∞

∫ t′
−∞Ψ4dt

′′dt′ ≈ h+− ih×

This is the gravitational wave strain, which we calculate from Ψ4 that we extract from the code.

(For ingoing waves, ∂rh = ∂th, the non-vanishing Weyls scalar is Ψ0).

In a linear approximation the Isaacson stress-energy tensor in locally Cartesian coords is Tµν =
1

16π
〈∂µh+∂νh

+ + ∂µh
×∂νh

×〉, with 〈〉 “average over several wavelengths”.

Energy flux:
dE
dtdA

= T 0r = 1
16π

Re〈∂0H∂rH̄〉 = − 1
16π

Re〈∂tH∂rH̄〉 = − 1
16π
〈ḢH̄ ′〉, for outgoing ∂th = −∂rh:

dE
dtdA

= 1
16π
〈Ḣ ˙̄H〉 = 1

16π
〈|Ḣ|2〉, with dA = r2dΩ “area element orthogonal to radial direction”.

Total flux of energy:
dE
dt

= limr→∞
r2

16π

∮
|Ḣ|2dΩ = total energy leaving the system = limr→∞

r2

16π

∮
|
∫ t
−∞Ψ4dt

′|2dΩ

Similarly for momentum:
dPi
dtdA

= Tir = 1
16π

Re〈∂iH∂rH̄〉 ≈ 1
16π
li〈|Ḣ|2〉, with li unit radial vector.

dPi
dt

= limr→∞
r2

16π

∮
li|Ḣ|2dΩ = limr→∞

r2

16π

∮
li|
∫ t
−∞Ψ4dt

′|2dΩ

... angular momentum ...

� Very often decompose Ψ4 “outgoing GWs” into spherical (or spheroidal) harmonics. Rel-

ative strengths of multipoles tell us about geometry.

� Numerically only have finite r. Compute signal at several extraction radii and extrapolate.

Or use CCE/M or hyperboloidal.
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7 Recap class

What have we seen? Recipe we introduced at the beginning:

1. Physical problem

2. Formulation

3. PDEs analysis

4. Select numerical method

5. Implementation

6. Evaluate errors

7. Physical interpretation

1. Physical problem: (1 example) Binaries: We saw how to construct BBH ID and how to

extract the GW signal from a binary. BBH, BNS

2. Formulation: We saw how to write NR as an IVP with constraints, using the 3+1 formalism.
∂tγab = −2αKab + Lβγab
∂tKab = −DaDbα + α[Rab +KKab − 2Ka

cKbc]− 8πα[Sab − 1
2
γab(S − ρ)] + LβKab

H = R +K2 −KabK
ab − 16πρ = 0

Ma = DbK
b
a −DaK − 8πja = 0

For BNS: need GR+Hydro equations!!

3. PDEs analysis:

� Introduced idea of hyperbolicity and thought about well-posedness of the I(B)VP.

Remember: strong hyperbolicity! ∂tu = Ap∂pu+ S. (ApSp) - principal symbol, full set of

eigenvalues and eigenvectors [plus technical conditions].

� Gauge conditions.

� We also saw how to turn the constraints into an elliptic PDE.

4., 5. and 6. only really in projects.

7. Physical interpretation: (at least tools for the job).

� Event vs apparent horizons.

� Gravitational wave extraction.

Thanks for listening!! Questions?
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