1 3+1 split of spacetime

“Standard” numerical methods for dynamical systems are designed for PDEs that look [roughly]
like:
oU = APQ,U +S (1)

7 —

Time derivative (first order in time). Spatial derivatives.

But GR looks like: G, = 87T, Everything mixed up. But geometrical.

— Let us locally introduce a time coordinate ¢, assuming now that we have a spacetime (M, g)
[not necessarily Einsteinian|. Then we will see how to “split up” the spacetime into space and
time geometrically. But throughout remember that ¢ is arbitrary. In the end, we want a form
like — Cauchy or “initial value problem”.

Try to express geometry in terms of “intrinsic” and “extrinsic” quantities to ;.

Figure 1: ¥; = level set t = const of t.

e a, b, ¢, ... abstract indices.
e 4, v, 6§, ... 4D component indices (0,1,2,3).
e i, j, k, ... spatial indices (1,2,3).

e () symmetrization.

e [ | antisymmetrization. Like normal.

o (-,+,+,+) signature.

® g, - 4 metric. V. - spacetime covariant derivative compatible with ggu.
® Y, - 3 metric. D, - spatial covariant derivative.

e DR, - 4 Riemann tensor, 2V Vi Ve =W Ry V.

® Rupeq - 3 Riemann tensor.



Lapse function (a): a™2 = —(V,t)(V%) Lapse — proper time elapsed between hypersurfaces

as seen by an observer moving along the normal direction (dr = adt). So what is a™2?
Remember: g = g®(e")q(e")y = gV 2" Vx¥ — in coordinate basis.

Unit normal vector: n® = —a V=« Normal to what?

Consider a curve X(S) : R — M with ¢ = constant along X.

(M — R*) (Stick coordinates on). (Take ¢ as time coordinate).
Then X : X*(S) has tangent vector S* = £ X#(S) = (0, X(3))".
Compute g,,n*S" = —aV,t S* = —a[l -0+ 0,X%(S)] = 0.

So n® is normal to the tangent vector of any curve contained in ;. If 3; spacelike, n®n, = —1.

Example: Minkowski: ¢ normal time coordinate

0 0O
V.t =(1,0,0,0)
5 0 100 )
nt = , a == (V,ut) (Vi) =1
0 010 T
n* = —aVH*t = (1,0,0,0)
0 0 01
The spatial metric: [Sometimes called 3-metric]. Yab = Gab + Nalp- Check: n%y, =

ny + (ngn®)ny = ny —np =0

0000
i . . T 0100
Example: Minkowski: constant ¢ slices n* =(1,0,0,0)" and 7, = 0010
0001
Projection operator: Y% = g% + nny. Check: v%7°. = 7. “Repeated application does

nothing new”. Good projector operator.
Now we want to decompose tensors using n® and y%.

Example: 3+1 split of a vector:

Ve = =g bvb ( Vb) a Vb
Normal component. Spatial part of V.

BREAK

Let us now take arbitrary coordinates z* on the slice ;. [Ok, in a neighbourhood, but could
make argument purely in submanifold.]
We have:  V,t=(1,0,0,0) — n,=(-a,0).

We also need the partial time derivative “time vector” t* = (1,0)7 in our coordinates. In



Minkowski (in standard coordinates) n* = (1,0)T = (9,)*. But n* # t* in general.
n* =n'Veat = (o™, -1(- z))T = (a7, —ofl(—omi))T

l
— ' = (9)" = (1,0)T = an* + (an)'d# = ant + B
——

f__J

[ components of “shift vector”.

Shift vector is spatial: Bn, =0

Abstract indices: t* = an® + p° Bng =0

Recall: (Coordinate) basis one-forms: V,X* .
(Coordinate) basis vectors: (2=)" .
These satisfy (by definition): (32:)" V. X" = 4,”
So simply we have: V,t — time coordinate basis one-form, t* — time coordinate basis vector.

(Weakness in NR textbooks.)

dz' = Bidt

Easy exercise - show:

B —a? 4 BBt B
g = ( P g j Bigi ) . It follows: G = ( 5 7.

2 ) ..
2 p%) Yij

Another exercise: Check ¢ g,s = 05

0 O & ;
Out of curiosity: Y = g and 7y, = ™ By :
0 % Bi v

Now that we have a metric in ¥, covariant derivative of 7,;7

Do Xy " = Y 075 VX, S+ with X spatial, i.e. n-X =0 [Contraction on any index].
Linear v Leibniz v/

Compatibility: Dovee = Va0 e’ Va(ges + neng) = 1neva™e! Vang + (b > ¢) = 0 as 3. = 0
by construction.

[[— Might be worried about dimensionality, # components of 4-Christoffels. Inverse spatial
metric? This will all work out!]]



Now we’ve seen how to express one part of VX under the 341 decomposition. This was the

part “intrinsic” to the slice.

Extrinsic curvature:

Consider 2 spacelike vectors U?, V* and take:
UV, V= U [V V" — nan®
= U*D,V® — U, (VVDngn® =UD, VP + U,(V,
—— ~ —~ v -

nq)Ven® [Why?]
Covariant derivative in >;. Bit “outside”. Note: no VV here.

Define “extrinsic curvature”:
Ko = —7.Veny = =71 Veng [Why?] = %Cw,d[vc(ozvdt)] = %c%d[avcvdt + V4tV .
= %C%d[avcvdt — a’lndvca] = a%‘f%dvcvdt Symmetric!

Don’t be confused by name. In coordinates: really part of the Christoffels.

So: UV, Vb =U*D, V'’ — (K, U*Ve)nb .
Equivalent expressions: Kg = —%ﬁn%b = —%ncvc%b — Ye(aVpyn® = —=Vany — naay
with a; = n°V.np “acceleration of Eulerian observers”.

Looks strange. Just check by brute force.

Examples:
e Minkowski, global inertial frame: n, = (1,0,0,0), K,, = 0.
e Schwarzschild spacetime, Schw. coords: ds? = — (1 — %) dt? + (1 — %)71 dr? + r2dQ?
Vot =(1,0,0,0); a = (1—24)2 5, — — (1 -2)Y2(1,0,0,0); K,, = 0.

e Schwarzschild spacetime, Kerr-Schild coordinates:
New time coordinate: T'=1t + 2M In !ﬁ — 1|,
so the metric is: ds? = — (1 — 22) dT? + 2LdT dr + (1 4 21L) dr? + r2dQ?
— No coordinate singularity at the horizon.

o= (1420712 g, — MO

\/T6(2M+r)
So far, introduced ¢. Derived / defined: « (some component of metric), n,, Ya» (some other
components. Which ones?), 5% — Bits of the metric.
Kab - Eth"lIlSlC CU.l"V&tUI‘e “How slice is curved in ambient space”.

Then we had: v,°V,{spatial tensor} — o ) o
D, — intrinsic covariant derivative

For nV,{spatial tensor} — Typically introduce £, “tensor” (+ extrinsic curvature terms).

Example decomposition of the spacetime covariant derivative of a vector:

VoV = g,V VP = (7,6 = ngn®) V.V = 7,5V VP — ngnV. V0 = 4,5V V9 94°] — no(n°V V) =
YoV Vvt — ngn®] — ng (L, V0 + VeV nb) = 1,59V Ve — nby,ngV Ve — n L, VP — n VeV nb
= DV 4+ nbViy NV ong — 1oLy VP — g VIV en? = DVP — nP Ko Ve — ng L,V + ng K LVE
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Next time: Check counting and break up curvature.
BREAK
[Quick recap]

[coordinates| Given / choose t,2*  [Drawing of ¥;’s embedding,|
— [metric| « - lapse, normal vector n%; 3% - shift vector; 7, - spatial metric / projector operator
— [Christoffels| D, - intrinsic covariant derivative; K, - extrinsic curvature “How 3 is curved

by ambient spacetime”. — [curvature??]

Want to 341 decompose curvature.

First: spring cleaning and counting

We’ve introduced several spatial tensors o, vup, Kap, 5%

Spatial should somehow mean that they act on (co)vectors in the (dual) tangent space of points
in X, T,%.

This is 3-dimensional - so expect to have only 3 value indices. But so far we’re stuck with
spacetime indices. Let’s fix this!

Start with some spatial vector V. In our coordinates we have: [Drawing of >,’s embedding. ]

—.
Y

n# = (-Oé,O) nt = (é’ _TﬁZ>T and VH = (‘/07 ‘/1)7 VN = <V07 VZ)T

— Similar for other spatial tensors: If you know the spatial (i,7, k) components, you can
construct the rest by “n - tensor” = 0.

Upstairs “0” components will be 0. Downstairs “0” components will pick up terms like 3°X;.

Some counting:

Christoffel symbols (WT*#,5 - 40 components. Check we have everything:

o (D, =) Iy — 18 components
o ;; — +6 components = 24 components so far

e J,a,0,6" —  +16 components = 40 components — So we have it all!

Decomposition of the curvature:

Want to express ) Rypeq in terms of Riju, Rij, Kij, ..

Due to Riemann symmetries, only 3 combinations are non-vanishing.

e Total projection onto the spacelike hypersurface ¥; - the Gauss equation:

72’71{7575 (4)Refgh = Raped + Kaec Kpag — Kaa Kpe = Rapea + 2Ka[c Kd]b-



e First contract once with n, then project - the Codazzi-Mainardi equation:

VS’Ybf’and (4)Refgd =Dy Koo — Do Kpe = 2D[b Ka}c‘

e Alternating [and using a, = Dy In ] - the Ricci equation:
1
72nbygnd (4)Rebfd == ﬁn Kac —+ aDaDCoz —+ Kad Kg

We will derive each of these in turn.

Gauss equation: By definition of Riemann, for any vector U".
VAU DR jon = 29919V V U,  Now take U" spatial.
Want to use ’ychUb = D, U* — n’K,.U° as derived before.

VANV gUy = Vv VeV Uy = Y e Ve(ViValy) — e [Ve(nyn®)]ViU,

v~

— —

Just carry this. )
Shifting antisymmetrization more_ )
. . Using compatibility of g,, with V,.
convenient for following manipulation.

Work on (*):

- ’y[ea”yg]fyg[ve(nfnh)]vhUg = — yghg[(venf)nh + (Ven™ns]VRU,  [2nd term 0 due to n L 7]

la

= —’y[‘;’yg;’yfvenf nthUg = fych[ab]nthUg =0 Back to Gauss:

Ve U™ D Reggn = 2076 Ve (VFVAU?) = 29{0357eg Ve (DyU? = nf K pnU")
= 2D[an]Uc - 27@7£ch(veng)thUh = Rabchd + 2[fc[a-[(b]hljh

As we wanted, since U® is an arbitrary spatial tensor.

Codazzi-Mainardi equation: Use definition of Riemann as before.

VA AInn D Regon = 29IV (Y fing = =295 19V (o (K g + 1 110g) = —2D(0 Ko+ 2720y Ky
[Last term is zero]. [J

Ricci equation: Lemma: Acceleration of Eulerian observers [normal, propagate perpen-

dicular to the hypersurfaces]

ay = Yn'Van, = ayfVala  n)n? = ®75(VaVt) Vi = a "V [{ =Vt Vi V% = a7 ' Dy

=Dylna
[Used 7bn, = 0, a, spatial since n’V,n, = 0 since n%n, = —1.]
—Vaony = Ky —ngay = —Kgyp —ngDpylna .



Ok, now some pain:

Yanl " W Reggn = 29! VIV V ng = = 2950V (K g + 1y Dy In )
= 7! WV Kpg + 90 WV Ko + 757 Ve(Dy In@) + yen? 7 (Vpne) (Dy In a)
K V! 42 AV Koy + Da(Dyln @) + Dy(ln @) Dy(ln )
— —Kabef + anfKab + 2n(a|neanfK|b)e + nanbnenanVfKeg
+ D,(a ' Dya) + a (D) (Dya)
= —K,Ky + anfKab — 2n(a\K|b)eanfne - nanbnfngKegine(% 0) + o 'D,Dya

f_/

n*Kyy =0—n"V . Ky, = —Kp,Vent.

But look: —2n(a|K‘b)eanfne = —2n(a‘K|b)eae = QKe(a|[K|b)e + V|b)ne]
Recall Lie derivative: LKy =nV Ky + 2K, Vyne

So: enf i WR jon = — K. Koy + 0/ V 1 Ko + 2K oo [Kp)¢ + Vipyn®] + oD, Dy
=L, K +a DDy + K,°K ]

BREAK
So far: 341 decomposition of geometry. Now to GR!
Einstein equations: Gap = 81T, with Gop = YRy, — %gab(4)R.

Decompose S-E tensor: p = nnTy, Ja = —nbng bes Sap = %CL’YZchd-

DR, = DRe, . will need contractions. Let’s work these out.
Contract Gauss equation with spatial metric [twice]:
yaentdyen gl DR ] = R+ K? — K K® = R+ K? — K;; K — in adapted coordinates.

I
WR + 2nont@ R
Scalar Gauss equation: GR 4+ 2 ntPR, = R+ K? — Kinij

Contract Codazzi-Mainardi equation with the spatial metric [once]:

Ve yIn DRy ron] = Dy K — DoK',
I
n @ Ry,

Contracted Codazzi equation: n“7§(4)Rac =DyK — D, K%,

Hamiltonian constraint:




n“nb[(4)Rab - %gab(4)R] = n"n"8n Ty = 87p
I
+ LHS Scalar Gauss
I
(R+ K? — K, K)

1
2

R+ K? - K, ,K® = 16mp — No time derivatives!

Momentum constraint:

”672[(4)Rbc - %gbc(4)R] = nb7§87rTbc = —87Jq
I
nbvg(‘l)Rbc LHS Contracted Codazzi

I
D,K — DyK",

DyK®, — DK = 8mj, — No time derivatives!

Evolution eq. for va:  L,Vay = —2Kap Definition of Ky (n® = L (t¢ — 89), t* = an® + %)

«

LiYap = t°VeYap + 29e(a Vi t* — This is 0;v;; in adapted coordinates. Why?
= (an® + B)VeYap + 270 Viylan® + 5]
= a[nVeyar + 2% Vil + [BVeYab + 27e(a Vi B] + 2n°Yea Viya(— 0)
= oLy Yab + L5Yab = —20Kaqy + LgVab

Notice that this would work replacing 7, with any symmetric spatial tensor.

LiYay = —20K 4, + Ly, But this is really just rewriting definition of K. Still need 6 EEs!

Evolution equation for K,: Write EE’s in trace-reversed form as: WR,, = 87 (Tab — % gabT)

Project: 759 Rea = 757597 Beear = 76057 Recay — 7625nn " Recy

—~ N

K\JK—\J

Use Gauss equation.  Use Ricci equation.

Putting this together: L, Ky = —a 'DyDya+ Ry + K Koy — 2K ¢ Ky — 87 [Sap — %’yab(S —p)]
Same trick on Lie derivative as in previous case:
‘CtKab = —DanOé + Oé[Rab + KKab — QKGCKI,C] — 8’/TO([Sab — %'}/ab(s — p)] + ‘CﬁKab

Finally: ADM [better “York”] equations in adapted coordinates a — i, £; — O

H=R+K?*— KK —16mp =0

M, = D,K*, — D,K — 87 Ja =0 Prototype “free-evolution” formulation
Livap = —200K s + L57Yap In original ADM:

LiKay = —DyDya + Ry + K Koy — 2K, Kipe] — 870 Sap — 37a6(S — p)] + LsKap—Svar



Counting:
4-metric: 10 - 4 constraints - 4 “gauge” d.o.f = 2 — dynamical degrees of freedom
3-metric + extrinsic curvature: 12 - 4 constraints - 4 “gauge” d.of =4 —

2 for spatial metric and 2 for extrinsic curvature.

Comparison with the Maxwell equations: writing them in flat space, with vector potential:

D,E’ = Apgp — constraint
0A; = —F; — 0;® — evolution equations

Analogy: A; — v, ® — 0, E; = Kjj

Hamiltonian formulation: [See Alcubierre, p. 75, 80-81] Since we're always talking about the
ADM equations [Arnowitt, Deser, Misner], let’s at least say what ADM really did.
Lagrangian density for GR: £ = /=g WR = a,/7 (R+ K, K® — K?), with 7 det. of 3-metric.
Canonical momentum conjugate to Yg: 7% = % =K ¥ — K% with 44 = LiYap-
Lapse and shift have no canonical momenta attached, so they’re not dynamical variables.

Hamiltonian density in normal way by Legendre transform: H = 7%4,,— L. Total Hamiltonian:

H=— /Zt(a Cy — 23 CH )\/f_ydg’m “vanishes on shell”; Ky, = —% (7Tab - %’}/abﬂ'>

— s

Hamiltonian constraint Momentum constraint

Equations of motion (by variation): ., = ;—H 7 = —%. Equivalently by Poisson bracket.

ab)

ADM formulation [?] (derived from the Einstein tensor) differs in a simple way from the “York”

formulation [?] (derived from the Ricci tensor).



2 PDEs: well-posedness and hyperbolicity

PDEs of physics: The physicist’s intuition:

In classical mechanics the motion of physical quantities is universally described by PDEs. These
PDEs can be characterized most simply as either elliptic, parabolic or hyperbolic.
First simplest version: Consider 2nd order, linear PDE with constant coefficients:

A Uy + 2bUyy + Cuyy, + “lower order terms” = 0, with a® + b* + ¢* > 0.

e Elliptic: b — ac < 0
No intrinsic “time”, good BVP-model, ex: Laplace eqn.
Constraints: [Standard form|]. H = R+ K* — K;; K", M; = DI(K;; — v;; K)

e Parabolic: b* = ac
Intrinsic time, good IVP, infinite propagation speeds, ex: heat equation.

(Apparent horizons). (Some methods).
e Hyperbolic: b — ac > 0

Time - and causality: i.e. finite propagation speeds. Fundamental particularly in rela-
tivistic context. Ex: wave eqn. ADM evolution equations [in some sense]
&g%j = —QOZKZ‘J‘ + ﬁﬁ’yija &J(Z-j = —DiDjOé + O[[Rij —+ KKU — 2K2kKjk]£5KZ]

Life is complicated! Models in nature arise with all types - especially in theories with “gauge
freedom” like E&M, GR. Encounter all three types!
Type of problem (IVP, IBVP, BVP) determined by classification.

Well-posedness: A PDE problem is called well-posed if there exists a unique solution that

depends continuously (on some norm) on given data.

“Change initial data a little, outcome changes a little”.

Hyperbolic PDE systems in first order form [Kreiss Busenhart]

Consider a system of PDEs of the form 9,U = AP,U + S (1)), with U(t,2") = U € R" and
where AP in as (n X n) matrix Vp. [constant]

Cauchy /IVP: Specify U(t = 0,z"). What is the solution U (¢, z")?

PDE problem well-posed if there’s a norm || - || such that ||U(¢,-)|| < Ke*||U(0,-)|| with K
and « constants independent of initial data. (|| -||, (i) ||aU|| = |a| ||U]|, (ii) triangle inequality
U+ VI < Ul + [IV]D, (i) [|U]] = 0 & U = 0).

Example of ill-posed IVP: 2D Laplace equation: 02¢ = —02¢.

First order reduction: 0;¢ = Uy, 0,0 = Uy — 0,Uy = —0,Us, 0,Uy = 0,Uj.

Choose ID: ¢(0,7) = e**¢y — Solution: ¢ = o’ [Cheating! But you can take the real
part.] U; = kgoer e Uy = ikgoe T+ Exponential growth dependent on initial data. [Code

exercise].

U 11 U
Example 2: Weakly hyperbolic model problem: 0, ( Ul ) = ( ) om ( Ul ), with U =

2 0 1 2
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(U, Us)"

Initial data: U(0,z) = (Be™*, Ae*)T = U\(t,x) = (ikAt + B)e* ) Uy(t,x) = Ae*(t+),
U, is fine (oscillates in time — bounded), Uy presents a linear growth but rate depends on ID.
IVP ill-posed. [Code exercise].

So what does work?

Weak, strong and symmetric hyperbolicity

Consider IVP for . Take arbitrary unit vector s*. The principal symbol in the s* direction is
AS = AZSl
Defn: If Vs the principal symbol has real eigenvalues, the system is called weakly hyperbolic.

Defn: If Vs' the principal symbol has real eigenvalues and a complete set of eigenvectors, and
IT,| + |T;'| < K (with K independent of s* and Ty has eigenvectors of p* as columns)
holds, then the system is strongly hyperbolic.

Defn: If there exists a symmetric (Hermitian, or self-adjoint, complex square matrix equal to its
own complex-conjugate transpose: for A Hermitian, a;; = @j; or A = AT = AH — AT,
positive definite matrix H (independent of s;), called a symmetrizer, such that HA? is

symmetric (Hermitian) Vp, then the system is called symmetric hyperbolic.

Weakly

Diagram: (for systems of the form of (I]))

Strict hyperbolicity: all eigenvalues real and distinct.

Intuitive summary:

e Symmetric hyperbolicity: good IBVP (depending on bcs).
e Strong hyperbolicity: good IVP, IBVP harder.

e Weak hyperbolicity: nothing!

Theorem: IVP for is wellposed iff the system is strongly hyperbolic.

(Part of) Proof: Apply Fourier transform f = [ ferm i da to : U = i|w| AU
Ao 0
Strong hyperbolicity < 3 similarity transformation such that S(w') A" S~ (w') = A = :

S~H(w’) is matrix of eigenvectors as columns T}, above.

Let H(w') = ST(w)S(w'). H is symmetric and positive definite. (Sylvester’s law of inertia).
Then HAY = (HA')*t

Show it: HAY — (HA“)t = STSAY — (A¥)S+S = SH(S(AY)S1 — (§H) "1 (A )T SH) S =

11



SHA—AH)S =0
Consider the norm in Fourier space: ||U] 2=/ UtHUdw
Parseval-Plancherel identity ([*_[f(z)|*dz = [~ | F(w)|2 dw) & |T}| condition guarantees that

this is a norm in physical space equivalent to Ly. Compute time der:

A%, = / 0+ FLA 0 \w| — i(A“' 0 0] dow / | T (W) A — (')A Y0 dw = 0
Norm is conserved! = System is well-posed! Note: source terms do not break the estimate.

Worst growth possible is exponential.

This is for linear, constant coefficient systems. Long way from GR. But: linearizing about an

arbitrary solution, these results carry over for local in time well-posedness. [Also FT2S!]
BREAK

Consider example: The ADM equations with fixed unit lapse and zero shift.

Equations of motion are:  9yv;j = —2K;;, 0K, = Rij + KK;; — 2K,*Kj;

First order reduction: — 97yij = Puij, s0 Rij = —10,P%;; + 20,P% 50 — 20:P)",

where ~ means “up to lower order derivatives”.

So: Oy =0, OPrij ~ kK, 0Ky~ —50:PF; 4 20, ) — 509"

This is a first order PDE system. We need to know the principal symbol, but the indices are a

pain. Therefore we make a convenient choice of variables, so that in the end we have to deal

with small matrices.
e Define: Li= 0% — s's; (s' is unit spatial vector)
e Linearize equations around flat space. (Write 7;; for “metric” and use v,;, ®p;;, K;; for
the perturbations).
® 7;; is decoupled, so we can ignore it.

Choose: (A stands for transverse)
Dy = SiSjSk‘I)ijk, Qg = st LI D,  Dygs =1Y Sk‘szk, Dy q = s's? J—Z Qi  Pyga EJ—ijJ—fZ D
Kss = SiSjKij, qu EJ_ij Kijy KSA = Si J_Q K’ij7 CI)E;B = (J_J_ —% J_J_)@Z]k, K££ = ( )Kij7

® 4;; = remaining components of ¢

Now if we 2+1 split derivatives in s*: 9;U = s;570,U+ J_g 0;U , then we can write:

Exercise: fill in as many of the missing steps you need to be convinced.

UA:(&)Aij) 8tUA:O

UTE = (oTF, KIE)*™ . OULE = A% O,ULE + “Oa derivatives”
Us = (Pygn, Pssa, Koa)t OUa = Afy0sUa + “Oa derivatives”
Us = (Pygs, Pssss Psgqy Kssy Kyq) T OyUs = A%y 05U + “0a derivatives”

12



Al = _Ol _02 ) tensor block (GWs) +1, complete set
2
00 O
Alp=10 0 =2 vector block 0, =1, missing one eigenvector!
0 0
00 0 0 O
00 0 -2 0
Apy=100 0 0 =2 scalar block 0, £1, 0, 0, missing two eigenvectors!
10 -2 0 0
00 -1 0 0

Eigenvalues and eigenvectors? 5 minutes with Mathematica: 1

Conclusion: ADM is only weakly hyperbolic (with this gauge and reduction)!

Why is this calculation unsatisfactory? (Besides the sad conclusion!)

1. Linearization? Is this ok?
2. Reduction? 0,®;; - 0;®y;1 — constraint!
3. Gauge choice? Might some other gauge be ok?
Still, this was ignored for ~ 30 years. Is there a strongly hyperbolic formulation of GR?

Two main free evolution formulations in NR:

The Generalized Harmonic Gauge (GHG) Formulation

Consider the 4D Ricci tensor with 'y = ¢TI gpe:
Rap =~ —1 g°0.0490 + Ol) + lower order terms
—— S~—~—
) / Contains second derivatives.
“Like” wave operator ) )
How can we get rid of this?

Note that I', = —gq02°, with 2° local coords. So choose (z® = 0 (“harmonic coords”), then

Rap ~ —3% g°*0.04gay, + lower order terms
—

—

This is just a wave operator, like in the wave equation! = The resulting system is strongly hyperbolic!

To be more formal: for (Oz° = 0 [= H®(g, ) more generally], define constraint Z, = —T', = 0:

13



Solve:  Rgpy + 0(aZy) ~ —59°*0:049ap + lower order terms
0:Z, = Hamiltonian and momentum constraint + 0;7, terms.
If Z, =0 at t =0 and constraints of GR satisfied — solution is solution to GR.

Generalized Harmonic Gauge (GHG) Formulation:

e symmetric hyperbolic

e all speeds are the light speed (up to first order reduction)

e well-posed IBVP

e finite difference or pseuspectral codes [codes: Pretorius, SpEC]

=—0*(K+F
e Gauge: Uz# = H* ! 8ta’ ° ( + .>+£B.@ o
OBt =T — ad'a+ F' + 70,5

e black hole excision, basic idea: cut BH region out of numerical domain inside of apparent

with F, F' free

horizon, Boundary “should be” outflow = no bcs needed. Then move excision region or

carefully move coordinates.

“Moving-puncture” / Conformally Decomposed Formulations:

e BSSN/BSSNOK [0-speed mode], Z4c/CCZ4 [no 0-speed mode, better!]

e well-posed IVP since it’s strongly hyperbolic

e progress on well-posedness of IBVP, hard to implement.
e radiation controlling constraint-preserving boundary conditions implemented.

e finite differences (almost universally) [codes: Einstein Toolkit, BAM, Lean, NRPy+]
oo = —20°K + Lga

0" = psI" = B + B70;8°

e “Moving-puncture method” [wormhole vs. trumpet D diagram], basic idea: singular

e “Moving-puncture” gauge: { (can use for BNS spacetimes!)

part of the back hole geometry is encoded in a spatial conformal factor. There’s a bad
point at the puncture, but clever choice of evolved varables makes point “manageable”

numerically. Puncture then advected around by the moving-puncture conditions.
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3 Initial data - solving the constraints [Alcubierre]

In the 3+1 decomposition we arrived at evolution equations and constraints. We now have an
idea of how to make evolution equations “nice”. Need initial data! (12 DoF)
H=R+K?— K;K"
M; = D' (Kij — 75 K)
Issues? (i). Get good PDEs. (ii). Choose data to model physics we're interested in. Earliest

— 4 eqgs., but haven’t stated what to solve for, “not even posed”.

approaches focused mostly in (i) and so will we.

York-Lichnerowicz conformal decomposition: What do we solve for?

vi; = ¥*9;;, with ¢ the conformal factor and 7;; the conformal background metric - natural to
choose ¥ =1 (i.e. ¢»* = 4'/3), but not needed.
Plug into the Hamiltonian constraint:

~ .~ ~ 1 1 .
D'Dyp — -pR — §¢5K2 + §¢5Kz‘jK” = —2m°p (2)

ool =

with f)i the covariant derivative and R the Ricci scalar associated with Yij- is quasilinear

elliptic equation for 1. Spatial metric v;; naturally constrained.

Now onto the momentum constraint: K;; = Ay + %%-j K
—
Tracefree Trace

Covariantly (in spatial slice) decompose S¥ = (LX)Y+T% where S¥ is symmetric tracefree, T%
is symmetric, tranverse-traceless (D;T% = 0, T} = 0), and (LX) = D*X7+ DI X" — 247 D, X*.
S¥: arbitr. sym. TF, T%: TT part of S¥, (LX)%: longitudinal part of S¥, conf. Killing form.

How to obtain an elliptic equation from this decomposition and momentum constraint? Two

options to construct L from, either use:
e Conformal metric (and associated covariant derivative).

e Physical metric (likewise).

Conformal transverse traceless decomposition
Define AV = =144 [A;; = ¢~2A,;]. Take care about metric used!
A = (LX)¥ 4+ Q¥ with (LX)", Q¥ defined with respect to D;.

Momentum constraint: D’(K} — 1K) = 8mj'
Substitute the previous definitions: A, X? = gl/zﬁf)iK + 81195, with

- ) ~ . ~ .~ ) 1~. =~ ) ~ ..
ALX' = Dy(LX)" = D'D;X' + 5 D'(D;X7) + RYX, (3)

where you use D;S% = ¢~1°D;(4'°S%) and Q¥ is transverse (D;Q¥ = 0).
Want to choose a method so that we choose a symmetric tracefree tensor, since “tranverse” is
differential and this is more of a pain. But: for Q% = M% — (LY)¥, M is sym. TF tensor.
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L operator is linear, so: AY = (LV)¥ + M with V' = X —Y*. Ay also linear, so momentum
constraint with becomes: A Vi = %@Z)GDiK — f)j]\;_/ij + 8mipllyt

Summary: Yij = Vi K = p=1044 4 %w_4:yin, Aii = (ZNLV)U + M

~ ) 2 ~ . N ) o~ 1 - 1 1 o~
ALV — g@ZJGDzK = —D;M" +8m'%",  D'Dyp) — SUR - EwK? + gw—mljmﬂ = —2m)°p

BREAK

Physical transverse traceless decomposition
Al = (LW)¥ 4 Q" where Q" is transverse-traceless with respect to ;.
Momentum constraint: A Wi+6(LW)9D;(Inv) = 2D'K+8my*ji, where (LW)¥ = o ~4(LW)¥.

Again, it is annoying if the “free data” Q% has to satisfy a differential constraint.
So: QU = My~ — (LZ)¥, Q is transverse. = A Z' = 6(LZ)Y D;(Intp) = =D, M4,

Again: Vi=Wi - Z¢. Total decomposition (summary):
Vig =V, KY =y (Aij + %W”K> . AU = (LV)i 4 SN

~ . ~ o~ 2 - ~ o~ L~ 1 - 1 1 - o~
ALV +6(LV)7D;(Inv) = ngK — 7D, MY + 8maptt, Avp — éq/]R — EMK? + §¢5A,~jA” = —2m)°p

Both conformal and physical TT-decompositions give a method for the constraints - but how

are we supposed to choose data to represent a particular physical scenario? We could:

e Simplify the form of the constraints with careful assumptions.

e Expand system to solve with “easier” given data. Start here.

Conformal thin sandwich (CTS) equations [York’99]

_

- —_— = =
- l
“Thin sandwich”, old ap- Choose 1 for some variables, instantaneous
proach of '60’s, Misner (et al.). control of dynamics.

@;; = Oy, with 7;; is conformal metric like before. Choose

i =0 (4)

[¥ = 0 at t = 0, volume element of the metric is momentarily fixed].

Now write ]
ui; = Oy — gwj(vklamz) (5)
= —20A;; + (LPB);; with same L we had before.
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Exercise: (i): :> Oy Inp = 0y (InyM/12), (i) = ;5 = v tuy;
Now work from : AV = i [ (LB) — i ] = 1@—;4 [(f,ﬁ)w — @ij},
—

Same conformal transformation

A= L [(iﬁ)ij — ﬂij] and conformal lapse & = ¢ %a with A% = !0 A% like before.

Hamiltonian constraint: 8Ay — R + ¢~ 7A;; A% — 2¢°K? + 16m)°p = 0 [as before].

Momentum constraint: D]- [%(iﬁ)”} — D]- [%a”} — %?ﬁGDiK — 8mpt05t = 0.

Construction of initial data: solve for ¥, 8, then: ~; = ¢49,;, K¥ = 1047 4 Ly K,
Al = = [([Zﬁ)” — ﬁ”] [Everything else is given]|.

Extended conformal thin sandwich:

In the last approach we had @;; ~ yi-j as given data, but introduced &. ;; we like, as it has an
obvious physical interpretation. a? Less clear perhaps. But we could note

OK = BOK — Ao+ o [Ajj AT + LK?| + dma(S + p)

with Aa = ¢ ~*[Aa + 2790;a0;(In1))] then [algebra] =

Ada+a [gﬁa — Y SAUA; + LWPK? 4 42D;(In <) D¥(In 1/;)} +14D;a D' Inh+1p~ (0, K — B0, K ) —
drap* (S +4p) =0

Now can choose 0; K and K [in case you have better intuition for them)].

We want to bash BHs together! How? — Simplify equations to put them in tractable form.
BREAK
Recap CTT: v =94y, K9 =y 1049 + Ly=430 K A% = (LV)¥ + MY

- 2 N . L 1 - 1 1 Y
ALV — ngDZK = —D;M" +8mp'%",  D'Dypp — SUR - Ew@ + gM%JA” = —2m)°p

Multiple black hole initial data

Time symmetric data: Take K;; = 0, then M; =0 (in vacuum).

Hamiltonian constraint becomes: SAU — Rw =0.

Choose 7;; = d;; flat, spatial metric is “conformally” flat =- Ay = D]%latz/} = 0 — Laplace eq.
Solution? ¢ =1+ 2L, with ds’ = da? + dy? 4+ dz? and r? = 2% + 9% + 22, for M = 0 flat space.
In spherical coords: ds® = (1 + %)4 [dr? +1r2d2?] — spatial metric of Schwarzschild in isotropic
coords & standard time slice.

Next solution (Laplace eq is linear): ¢ = 1+ Zf\il QIFL—M N black holes intially at rest, M;

“bare masses”, 1 — oo as r — r;. Solution known as —

Brill-Lindquist (initial) data:

Recall Schwarzschild:
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Take the blue slice.
B B !

Embedding diagram

P

with two \
asymptotically flat /

ends.

N +1 asymptotically flat ends - should

we worry about the other ends? r; are

—  not really part of the manifold, known

J \ J \ as “punctures” (hidden inside of their
horizons).

Brill-Lindquist data:
e May correspond to a BBH is the coordinate separation is large enough.
e Not very relevant for GW astro or astrophysics: BHs are stationary initially (not orbiting).

e Time symmetry is too restrictivel — Give the BHs linear momentum and spin.

Bowen-York extrinsic curvature: Solving the momentum constraint:

Consider the momentum constraint in conformal tranverse traceless decomposition:

ALVi —§7/16[)iK = _[)jMij + 87T¢10ji
Choose 7;; = dij, X : .. \VK/\
— 0 for maximal slicing.  — 0 for free data. ~ — 0 in vacuum.

“conformally flat”.

Let’s make these solvable. Start with: A Vi = AV + %Dif)jf/j = 0 both terms are flat.

Use Cartesian coords: linear, constant coefficients!

(Bowen& York (again)): V= —L [TP! + ni(n;P7)] + Le*n; Sy, where P, S are constant vec-
tors, €% is the Levi-Civita compatible with 7;, n' is the outward pointing unit radial vector.
In vector notation: V = —-- [7]3 + 7(7 - ]3)] + (11 % S)

r

Conformal extrinsic curvature:
/L'j = ([Z‘?)l] =3 [nZPj + njB- + (nkPk)(nm] — 51)] — %(Eilkn]’ + Eﬂkni)nlsk

52

K;; = w_QAij — Bowen-York extrinsic curvature

Physical iterpretation: P* — ADM linear momentum [at spatial infinity]; S* — angular

momentum (spin) [at spatial infinity| (not really well defined ...)
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“Puncture” initial datas:

Now we have an analytic solution for the momentum constraint that represents something like
a boosted and/or spinning particle [or several]. What about Hamiltonian constraint? Analytic
solution? No such luck ...

Ay + % @ Aiinj =0. Asr — oo we want ¢ = 1 + 2—]\{, can take this as bc.

— J\f
Flat Curse!

How can we generalize the Brill-Lindquist initial data?

Y = YL tu
dL = Zz]\il Qb

Ansatz correction

Brill-Lindquist as before

-7 o
Solve for u: Au+n (1 + w%) =0, with n = 8¢17 AV A;;. BC? u — 1 at oo.
BL

What about as 7 — ;7 Do we need bc’s there? No:

1 1
L —

VpL ~ o, ATAy ~ I : .
|7 — 7] No spin No spin

— g

Spin |7 — 7] Spin
= ne~q L
= =7
What about <1 + wﬁ)(? (u finite, but ¢ p;, blows up). Regular (and Au ~ 0 near puncture).

But we need to show that there are solutions. Brandt & Briigmann: there are unique C?

solutions — we can ignore the punctures when solving for u.

This is the data that most numerical relativists have been using in applications since 2005.
Its accurate numerical solution (with spectral methods) was pioneered by Briigmann, Ansorg,
Tichy.

Summary of puncture data:
Strengths:

e Analytic solution for momentum constraint.
e (Partial) Control over physical setup.

e Can be solved really accurately.

Weaknesses:

e No conformally flat slice for Kerr.
e “Junk” radiation: initial data are a spinning BH with radiation.

e Assumptions that are math good are not necessarily physically good.

Further physically relevant improvements:

e Initial data with higher spins: metric cannot be conformally flat — cannot use Bowen-

York extrinsic curvature and have to solve 4 coupled elliptic equations.
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e Eliminate eccentricity: tune initial parameters by running first orbit until eccentricity is

small enough.
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4 Apparent horizons

(What we will not talk about:)

Event horizons:

The true definition of a black hole or a black region is the following. Take an asymptoticaly flat
spacetime. (Various definitions of this, but future null infinity is a common feature). Consider
the complement of the past of future null infinity. This region, if it exists, is called the black
hole region. The boundary of the BH region is the event horizon (EH).
We avoid this (when possible) in NR. Why? — The definition is global!

This means that we are required (in principle) to search the whole of spacetime for the EH.

Painful. Standard approach: compute a spacetime and look for EH in postprocessing. Requires
lots of output. — Reading 4D data. — Interpolation in space and time. Horrible!

1. Evolve until the final BH has settled down.

2. EH is attractor for null geodesics propagating backwards in time.

3. Find EH via backward in time integration of null surfaces (null geodesics enough in
spherical symmetry).

4. Null version of the Raychaudhuri equation is suitable to null geodesic congruences.

BH region”

s

EH .-

s

Past of .+

]Jr

’

2t

Enter the apparent horizon (AH):

Think of a sphere at a particular instant of time (intertial) in Minkowski spacetime. Consider
what happens to the area of the sphere if we expand it along an outward pointing null vector

field. — Use this idea to characterize BH region.

Area increases
(shoot inwards
and it decreases).

45° 45°

Consider a topological sphere in some other spacetime, again at some instant of time (defined
by some time coordinate).

If when we track the area of the sphere along an outward pointing null vector it decreases we
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say that the region inside the sphere is trapped.

If the area is constant under this operation, the surface is called “marginaly trapped”. The

outermost marginally trapped surface (MOTS) (if it exists) is called the apparent horizon.
AH’s crucial in proofs of “singularity” theorems.

Clearly this is intuitively consistent with ‘nothing escaping’, but what is the relationship be-
tween the EH & AH?

Trapped region

e Assume cosmic censorship. [Big assumption].

e If there is an AH, it must lie inside a spatial slice of the EH.

Is the AH “just as good” as the EH?

No! “Absence of proof is not proof of absence”.

e AH depends on spatial slice. Not 4-covariant.
e If you take a weird slice, there may be no AH even in a BH spacetime.

e This can be done even in Schwarzschild. {Wald-Iver}

Mathematical details:
Consider a closed 2D surface S inside a spatial slice ;. s

® is spatial unit outward normal

vector. n® is timelike unit normal to ;.
Outgoing null vector: [* = n® + s°.

ab

2-metric in S: ¢® = g% + nnt — s> = 4 — 5%

(1) (2)
Expansion of null-geodesics: © = —i—%q“bﬁlqab = +%q“b <Esqab + Enqab>

Meaning? Compare with 341 split:

The time derivative of volume form: £,,/y = —,/7K — here area form, but same idea.

(Lsqay = 2Xap, X extrinsic curvature of S as embedded in 3;. ¢*°L,qq = 2X).
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But: Liqap = 5°De(Vap(— 0) = 545) + 2¢c(aDpys® = qPLqay = 2Dys* (1)
Now the other term: (2) ¢®L, e = —2¢°Kap — q°L,(845,)(— 0)

=0=Ds— K+ Kijsisj (6)

Equivalent way: © = ¢V, = ¢V (sp +n) = q(Dasy — Ku) = Das® — (7% — 578°) K
Definition of AH? Outermost S with © = 0.

“Minimal surface”? Same, with K;; = 0. AH can coincide with minimal surface in this case.

How can we characterize / search for the AH?

Level set approach: Suppose AH (in 3};) is a level set of F(x?). Normal vector: s' = %F, with
u?* =~ (D;F)(D,;F).

6) = © = (7 —u2(D'F)(DF))(u"'D;D;F — Ky;).

Given a slice v;;, K;j, how can we determine if there is an AH or not?

Examples:
(i) spherical symmetry: ds?> = Adr? + r2BdQ?, s' = (A71/2,0,0)7
@ =0 = \/LZ (24 0,InB) — 2K{ = 0. (Algebraic relation).
If this holds, then we have an apparent horizon. E.g: Schwarzschild:
Kj=0,A=(1-2)"" B=1 = AH condition: 2(/(1 - 2M) =0 = r = 2M

(i) axial symmetry: Solve an ODE. Take F(r,0) = r — h(f), however beware: horizon as-

sumed to be a strahlkorper (ray-body, with rays from the centre intersecting the surface

only once).

(iii) “Full” 3D: Various methods, see Living Review of Thornburg. Here: Flow method.

Basic idea:

e Introduce an unphysical time A.
e Make some guess.

e Then 0,2’ = —Os'.

e When 0,2° = 0 we have an AH.

Ex: Check in Schwarzschild that the “-” sign is the right way around.

Writing surfaces as Fi(2/,\) = 0. £ F(a',\) = O\ F + % D, F = 0.
By Flow equation: 0\F = ©s'D;F = O\F = |DF|©, since s' = 3.
Now: Taking F' =1 — h(0,¢) Oxh = —|D(r — h)|O. Parabolic type equation.
e Method is slow.
e Optimization is possible.

e Often “direct” solve still faster.
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5 Relativistic hydrodynamics

e Most astrophysical systems involve matter sources, which need to be modelled! Fluid
approximation: matter is a continuum. “Infinitesimal” fluid element contains many par-

ticles.

e Here (follow Alcubierre/most NR groups) Eulerian approach: fix coordinate system (341

coordinates). Describe motion in these coordinates.

Special relativistic hydrodynamics

Stress energy tensor (for a perfect fluid: zero viscosity and no heat conduction):

Ty = (p+p)uyty +p M,  p=0 “dust”.

ut: 4-velocity of fluid elements; p: energy density, p: pressure (as measured in fluid rest frame).
p = po(l +¢€), with pg: rest mass density and e: specific internal energy (per unit mass).

Specific enthalpy: h =1+ €+ :40, “Total energy to do work per unit mass.”

This gives: T}, = pohu,u, + p My -
It’s common to write: pg = n M, with n: number density and M: rest mass of fluid particles.

Notice that p above is not “p” we had before in the ADM decomposition:

papy = 0¥ T, = poh(u,m*)? —p = pohW? — p,

where we introduced W = —u#n,, = u°, because in Minkowski (intertial frame) n,, = (=1, 0).
Note that n* # u* in general. u,u” = —1 holds and implies W = (1 + Zi(ui)2)1/2.

But v’ = Z—S standard 3D speed of the fluid, from which we conclude that W = (1 — v?)71/2 is

the Lorentz factor.

p = papm when local coordinates follow fluid elements (Lagrangian approach).

(Is this always possible?) Note: choosing u* = n*, even in Minkowski is not possible if you

want as the metric.
0 1
Variables:  (po, €, p, v%) — 6 primitive variables
: Ju(pout) = 0 Conservation of particles —  leq. ,
Equations: . 5 equations
— 0,T" =0 Conservation of energy-momentum — 4 eqs.

Need one more equation: Equation of state: p = p(po, €)

Let’s get the equations of motion:
D = pyW': rest mass density as seen in Eulerian frame = 9;D + 0(Dv*) =0

Continuity equation (from Conservation of particles)

Define: S* := pohWut; spatial comp. S* = pghW?v": momentum density in Eulerian frame.
From T}/ = S;;/”V +po, —  OSi+ O(Siv*) +9p =0 Euler equations,

momentum can change because of flow of momentum “0x( )” and force of pressure

13 /l:p”.
One equation missing! Define: €& = papy — poW = papy — D = pohW? —p— D, the difference
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between total energy density and mass energy density as measured in Eulerian frame. (This
variable chosen, because it allows to find an equation in balance law form).

Notice S° = pghW? = E+D+p. From the conservation of energy: 0 = 9,7 = 9, (Ss‘l}u + pn“0>
= & + O[(€ + p)vF] = 0.

Summary:
0D + 0x(Dv*) =0 D = poW
Conserved e : (Do) Relation to po 5
. 01S; + O (Siv®) + 0ip = 0 N . Si = pohW=v"
variables: “primitive” variables:

0E + OL[(E + p)v*] =0 E = pohW? —p — poW

Valencia Formulation (1994)

A word on thermodynamics: [Still SRHD)]
Consider contraction u,0,7" = 0 = ufd,p — pou'd,h = 0 (used w,0,u* = 0 from
conservation of particles). But h=1+¢+ :40
de d (1
R (%) =0, where d/dr = u"0, (7)

Local first law of thermodynmics. Why?

- Rest mass M. M B 1
Fluid element \ - Internal energy U. » ©° _UV = dV=Md <P0> (M constant)
- Volume V. =y = dU=Mde
1
First law: dQ = qu + padv =M [de+p d (%)}

Heat loss/gain. Change in internal energy. “Mechanical” work done.

But d@Q = 0 (perfect fluid: no vicosity, no heat conduction). — No heat conduction!
N.B. d@Q = T'dS “Entropy preserved along flow lines” (for perfect fluid).
So above is just this relation along the flow.

General relativistic hydrodynamics: Generalization easy!!

Perfect fluid stress-energy tensor: T}, = pohu,u, + pg,, (with 4-metric)
“Specific enthalpy” (again): h =1+ €+ pﬂo

Equations: Vilpou") =0 Remember — V ,&# = =0, (/=g &), so rewrite:
' v, T =0 [ g V=g g5 '
0u(v/—g pou*) =0 Conservation of particles. Still total divergence.

(V=g T") = V=g re T | Conservation of energy and momentum.

—

“Divergence-like term”. “Connection from downstairs indices”.
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Now use 341 language: g = —a*y, W = —n*u, = au’ Lorentz factor.

Define: v = “W + % [= & L. u®] “Speed of fluid as seen by Eulerian observers”.

D = poW: 8,(\/7D) + 9k[\/7D(av® — ¥)] = 0 Conservation of particles.

St = pohWur: 9y(\/7S:) + Ou{/A[Si(av® — B¥) + apdF]} = a\ AT Ty with TF = %58 + pétt.
“Conservation of momentum”. I'). part due to “Gravitational forces”. GR Euler equations
Finally: £ = pohW? —p—D: —  Algebra —

A (V7E) + Or{\ALE (= %) + apv]} = o\ /A(T0, In o — T TH)

Conserved: (D, S;,€), Primitive: (po, €, p, v*),
related by: D = poW, S; = pohW?v;, £ = pohW? —p — D

= pohW?viv; + vi;p

Finally: papy = € + D, japy = S°, S

“Above is the form normally treated numerically”. Here we still have stuff like T'..

Notice the the flux-balance law form, convenient because these equations have non-smooth

(shock) solutions, and there are special methods for flux-balance equations to deal with that.

Let’s write it in 3+1 language properly: —  Algebra —  We obtain:

0D + Dy(aDv*) = aKD + LzD
0,8+ Dpla(S" ++*p)] = aKS" — (£ + D)D'a + L3S!
)€ + Dp[av™ (€ + p)] = (€ + p)[av'v! Kij — v' Dia] + aK (€ +p) + L€
Notice: traded out “0;/7” terms to get “Lz” on RHS.

Equations of state:

: Rest densit
We have 5 equations for 6 unknowns. Need EOS:  p = p(po, e){ po: TESL THASS CHETEY CEnsity

€ : Specific internal energy

Key question: how does the EOS affect GWs?
Models: Since EOS not known, and for numerical simplicity need models / simple forms.
e Easiest choice: Dust: p =0

— Oppenheimer-Snyder collapse.
— Non-uniform flow results in “shell crossing” singularities (simple shock formation).

— Cannot make stars — nothing to hold them up!

e More realistic: Ideal gas EOS: p = (7 — 1)pge, with v the adiabatic index (not det~;;).

This follows from

PV =nk T (8)

Mumlﬁr O\—\Q/—\

f Boltzmann
Pressure  Volume ) Temperature
partlcles constant
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Start with the first law: dU (S, V) = TdS—p dV and identify T = ( ) and p = — (g—U)S.
Perform a change in derivatives in an equivalent way to a coordinate change:
from S,V to T, V. Relations between coordinates: V =V, T = T(S,V) so that

(5v)r = () (57)s + (5¢)1 (55)y» where we set (Gp).,

change. Apply on U and use the Maxwell relation (8—5) = (

(gg)T = (gg)s + (25)T (gg)v =-p+T (8T)V = (using
Thus U = U(T).

1 from the coordinate
e

IIVII

Op
oT
)

Introduce the specific heats at constant volume and constant pressure respectively:

1 [/TdS dU .
v =7 d_TV: ¥ia with cp = CyY

1 TdS First Law 1 dU i oV ] n nk
= — [ — t Law - | 9V .
v~ M\t M |ar "P\or) | T\ T Mey
So v = < ]\/T[Lfv) If ¢y is constant, then U = McyT: v —1 = va — % _ 1%'

Isolating the pressure: p = (v — 1)% = (v — 1)pge.
This model can support stars and is often used.

e Polytropic EOS: p = Kp}, = K le/ N, with N: constant, polytropic index, I': constant,

“adiabatic index of polytrope”. Careful! not necessarily 7.

Consider an adiabatic process (d@ = 0, no heat transfer) for the ideal gas.
From first law: 0 =de +p d <pi0> =-Ld (p1> +p d( ) which implies dp = vdpo —

y— ~—1
integrate to p = K p] with K some constant. Only in adiabatic process 1nvolv1ng an ideal
gas I' = v. However, polytrope is used even when there is heating and is a common choice
in simulations. Popular modifications are “piecewise polytropic EOS”, where different

pieces are glued together to interpolate some desired EOS (from tables).

Astro/numerical comments:

e Basic influence of EOS on GWs? Stiffer (higher p) HMNS ‘merger remnant’ survives
longer before it collapses to a BH. — Complicated waveforms! We hope that in the
future this will constrain EOS by observations of GWs.

e Scale invariance gone: NS mass is < 2M,.

e Numerical work is harder: shocks mean accuracy necessarily worse at same computational

cost, and slow convergence. Better methods / PDE understanding desired.

Hyperbolicity and the speed of sound

Hyperbolicity depends on EOS, but it’s generally fine. Causality is used to rule out some EOSs.

Idea: write system as 0,F"(u) = s(u), with F' the fluxes and u the variables. Strongly hy-

perbolic? Construct Jacobian matrices A’i‘j = %I;: and consider arbitrary vectors &* and (*
satisfying £,6" = —1, (,¢(* =1, " =0
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System is strongly hyperbolic if the matrix A*¢, is invertible (i.e., non-zero determinant) and
the principal symbol A* = (A, )~ (A*(,) has real eigenvalues and complete set of eigenvectors
[+ technical conditions].

Choose as main variables u = (pg, v*, €):

fluxes along the time direction are F{ = D, F?, = S5', FY =&, and along

the x direction are FY¥ = (av” — %)D, Ff | = (aw® — %)S"+ ay®p, F¥ = (av” — 7)€ + apv®.
—  Algebra —

System is strongly hyperbolic, with 5 eigenvalues: A\ = —f% + av® [multiplicity 3],

Mo = =B {07(1— ) & 0 T (1 — 28) — (WP(L — )]}, with o2 = 7w
The local speed (;f sound (speed at which density perturbations travel as seen in the fluid’s ref-

erence frame) is defined as ¢? = % (X + ,%/-@), where x = dp/0dpy and k = Ip/Je.
0

Weak solutions and the Riemann problem: For linear hyperbolic systems, smooth data stays

smooth, so that non-smooth data will “just” propagate. Not true for non-linear systems!

Burgers equation: dyu + ud,u = 0 (strong form). An advection equation, but the speed is the

solution. The wave “breaks”. The solution exists only for finite time.

t =later t = tshock

This happens in the Euler equations. It means that the fluid model (vanishing viscosity) breaks
down. But we want to keep using them, so work with “integral form” of conservation law:
du+ 0, F(u) =0 —  [7 7¢O+ 0, F(u))dxdt =0 =

I [ (udig + Foy¢)da dt = — [ ¢(x, 0)u(x,0)dx.

u is a weak solution if the previous equations holds for V¢. Try to understand these solutions.

up, <0
Riemann problem: Example: Burgers equation with u(z,0) = r

ug x>0
(1): With uy > ug: there is a unique weak solution with speed s = (uy + ug)/2. Generally
speed is s = %, where [ | = “jump in”. Solution is a shock wave.

Rankine-Hugonot jump condition: governs conservation laws across discontinuities.

up, T <urt
(2): With uy, < ug: the weak solution is not unique. Burgers: u(z,t) =< z/t upt <z < ugt
Ur T > Ugrt
Solution is an interpolating solution, a rarefaction wave.

How do we choose the “physical solution”? Entropy conditions. [Stable solution]

These ideas can be generalised to systems.

e Work with strong-form PDEs. Use entropy conditions to choose physical “weak” solution.

e Use numerical methods (HRSC = “high-resolution shock capturing”) that naturally avoid

computing derivatives across discontinuities.
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Electromagnetohydrodynamics [based on Shibata’s Numerical Relativity, sec. 4.6]:

Electric and magnetic fields £, B* (spatial — on ¥, n,E* = n,B* = 0) and electric current j*.
Antisymmetric electromagnetic tensor: F® = 2pleEY + B, with €*¢ 3-Levi-Civita tensor
(= n%gape). Thus E¢ = F%n;, B* = %e“chbc.

Current decomposed as j% = p.n® + j¢, with p. :== —n,j® the electric charge density defined on

¥, and j¢ = 425° the electric current vector on Y.

Maxwell’s equations: V,F% = —4m;° Viafig = 0. Different ingredients:

e Continuity equation for electric charge: V,j* = 0 — evolution equation for p..
O(/pe) + Oul(y/Ala7* — pet]) =0
Ohm’s law: ¢+ (jPup)u® = 0. F%uy, with o, conductivity (= oo for ideal MHD). Take j¢
and put in equation above:
O (/Ape) + Ok(\/Apet®) = 0.0k { A(WVF + B¥)Eiu; — (W EF + ¥, B;)]}

e Constraint equations: Gauss law: D,E® = 4mp,, in coord basis: 8k(\/7Ek) =47\ /Ype
and no-monopole constraint: D,B® = 0, in coord basis: 9yx(,/7B*) =0

e Evolution equations for E* and B’ (Ampere-Maxwell’s law and Faraday’s law):

OE' — LB = aKE" — Dy(ae" B;) — 4maj’

. , . g 341 language
0,B' — LB = aK B + Dy(acVE,) } sHas

O (VVE') = =0k [ V(2B EM + ae" B))] — A /A (aj’ — Bpe)
O (VVB') = —0k[ V(28 B — et E;)]

} Conservative form

Now the energy-momentum tensor has 2 parts: T, = THP +TEM (with THP = pohugupy + pgap)
and ThoM = & (FucFy® — 19aFeaF ™) = & [BE55E (0 + name) — EoEy — BBy + 2n(a€)cai°BY).
The 3+1 decomposition of T, in the Einstein equations will now have hydrodynamical and elec-
tromagnetic terms. From above we have that V*TEM = —F,, 5°.
Conservation of energy-momentum yields: V°T,, = 0 = V*THP 4 VoTEM = bTHD = |, 40
where the electromagnetic forces act as source. Two options:

e Treat electromagnetic force as external force and write only fluid part in conservative

form. Conservation of total momentum and energy not guaranteed. Shocks not accurately

captured (electromagnetic speeds not taken into account in the advection terms).
e Fully conservative form. Commonly used for MHD.

Ideal magnetohydrodynamics:

Conductivity o, = co — require F%u;, = 0. This implies that the electric field in the frame
comoving with fluid vanishes and E' = —€7%u; By, so E' is obtained from B’ — no need to

evolve E'! Solve the conservative form of the ideal magnetohydrodynamics equations.
MHD important for the description of jets and electromagnetic counterparts.

Not covered here: radiation transfer (Boltzmann’s equation, momentum formalism, leakage

scheme) — neutrinos, microphysics (electron fraction), ...
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6 Gravitational wave extraction

“Strong-field” region

\/\ °
( Compact | W

+ Emitted waves carry

\ objects ) ‘
' © energy and momentum.

/

Boundary of numerical domain

Gravitational waves (GWs):

e Perturbations of spacetime travelling at the speed of light.
e Interferometers need waveforms [matched filtering].

e GWs not raw output of numerical simulations.

How can we read them off 7 Two main methods:

e Perturbations of
— Schwarzschild — Regge-Wheeler-Zerilli equations.

— Kerr — Teukolsky equation.

e Newman-Penrose formalism. More popular! We will only discuss this.

The Weyl tensor:  Coaped = "™ Raped — =25 (9aie"™ Rap — goic"™ Raja) + mga[cgd]b(n)}%

e Its expression depends on the number of spacetime dimensions n (for us here n = 4).

e n(n+ 1)(n+ 2)(n —3)/12 = 10 indep. comp. — same symmetries as Riemann, and
tracefree.

e Conformally invariant C%ed = C%eq, under Jab = Jar = QG

Bianchi identities: V,C%q = V[cRd]b + %gb[cvd]R =87 [V[ch]b + %gb[cvd]T}

(same structure as the Maxwell equations)

Electric part:  Eqq = n®n® Cuupa h n® arbitrary timelike unit vector and

wi
Magnetic part: Beg = n®n® *Chupg *Cobed = %ecdef Cabes the dual Weyl tensor.
Compare to electromagnetism: electric n®F,, = E, and magnetic n®*F,, = B, fields, with

*

= —%eadech and €gpeq the 4D Levi-Civita tensor.
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E., and By, are spacelike, n’E,, = n’Bg, = 0, due to the symmetry of Weyl.
E., and By, are symmetric and tracefree — 10 independent components (like Weyl), 5 each.

Cabed = 2 [lajeEapp — bjcBagja — nieBaje€ab — NjaBje€®ed|, With Loy = gap+ 21,1 and €gpe = neqape.
3+1 language: using field equations of GR [in vacuum]

By = [Riy+ KKy — Ko KM By = e DiKy 9)
E;; and B;; satisfy equations analogous to the Maxwell equations namely:

] _ J _kl ] _ 7 _kl
D]EZ‘]‘ = BijZE i DJBZ']‘ = —EijZE s

and propagating like Maxwell, with acceleration a, = Dy In v and €4, the spatial Levi-Civita:

O Eij = LsE;j + a[DyByiey™ — 3E* i Ky + KE;; — ¢ e] " B Kin + 2ax Byaeyy™)
OBi; = LsBi; + a|—DyEyey™ — 3B* (K, + K Bij — €€, By Kiy, — 205, Ejie)™)

Newman-Penrose null tetrads:

Supose we have an orthonormal tetrad (e4)®, with A tetrad label and a vector label.

(e4)(€B)’gap = Map, With n4p a constant matrix diag(—1,1,1,1).

¢ = timelik it t
(€0) HIEHKC L%m vee OF . — Build null tetrad!
(el)“ = asymptotically radialy outward unit vector
1 Null tetrad: (%], = k%k, = m*my, = m*m, = 0,
=Bl ) e =
((e0)® — (e1)%) [°k, = —m,m® = —1, other contractions vanish.
= —=((e
\f ( O)a Note: large (6 parameters) freedom in choice of tetrad.
N 7 “2 . +iles)”) We can use the null tetrad as a tensor basis.
N 7 ((e2)* —i(es)?) Let’s use it to decompose the Weyl tensor.

The Weyl scalars:
\IJ() = Cabcdlamblcmd, \111 = Cabcdla/{?blcmd, \112 = C’abcdl“mbmckd, \113 = Cabcdlakbmck’d,
Uy = Copeqk®mPkm? — 5 complex scalars (10 components of Weyl).

In terms of electric and magnetic parts: Q;; = Eij — By, Uy = Quym'm?, ... |, ¥o = Qiym'm7.
U,: outgoing GWs (far from source). (¥q: ingoing GWs).
Classic expectation: Peeling: far from isolated source: W, ~ 5 - (depends on notion of

isolated). (Side note: the Petrov classification of spacetimes depends on relations between W 4).

In NR we can use @[) and construct ¥ 4 by contraction with [*, k% m* m® which we have to

build. Like [* = f(n + s), for example.
Why should we bother? What physics does it tell us?

Energy and momentum of GWs:

Recap of GWs: in vacuum, linearize around flat space hy,, = h*Af, + h* A%, (+ polarization
+ x polarization), with Oh" = 0, O™ =0, and A, 1" =0, A,,n* =0, At =0 and [* null and
n® timelike. h are the amplitudes and A, the constant symmetric polarization tensors.
Considering plane waves (in TT gauge) outgoing in r: h = h(r —t), 0,h = —0;h. —

31



Vg =Ty =Wy =Wy =0, Uy = —1(02h" — 20,0,h" + 2hT) + L(OFh* — 20,0,h™ + 92hX)

Uy = —ht +ih* = —H with H = h* —ih*. Thus = H=—["_[" Wdt"dt' ~ bt —ih*
This is the gravitational wave strain, which we calculate from W, that we extract from the code.
(For ingoing waves, 0,h = 0;h, the non-vanishing Weyls scalar is ¥y).

In a linear approximation the Isaacson stress-energy tensor in locally Cartesian coords is 7}, =
5=(0,h 0,0 + 0,h*0,h), with () “average over several wavelengths”.

Energy flux:
a5 = TOT = 2 Re(0"HO"H) = —:LRe(0,HO,H) = —7:-(HH'), for outgoing d;h = —0,h:
4y =L L (H H > = 167r<|H ), with dA = r?dQ) “area element orthogonal to radial direction”.

Total flux of energy
‘ff = lim, o0 7o 55 |H|[2dQ) = total energy leaving the system = lim, o % $ ffoo U, dt'[2dQ

Similarly for momentum:
Ab = T, = LRe((? HOH) ~ 1+ (|H| ), with /; unit radial vector.
B = Vi, oo 1= § 1| H[?dQ = hmr_m 2G| [ Wt 2dQ

.. angular momentum ...

e Very often decompose ¥, “outgoing GWs” into spherical (or spheroidal) harmonics. Rel-

ative strengths of multipoles tell us about geometry.

e Numerically only have finite r. Compute signal at several extraction radii and extrapolate.
Or use CCE/M or hyperboloidal.
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7

Recap class

What have we seen? Recipe we introduced at the beginning:

1.

N e W N

Physical problem
Formulation

PDEs analysis

Select numerical method
Implementation
Evaluate errors

Physical interpretation

1. Physical problem: (1 example) Binaries: We saw how to construct BBH ID and how to

extract the GW signal from a binary. BBH, BNS

2. Formulation: We saw how to write NR as an IVP with constraints, using the 3+1 formalism.

OYab = —20K 4y + LgVap

O Kap = —DoDyor + a[Ray + K Koy — 2K,°Kye) — 8m[Sap — 57a(S — p)] + LsKa
H=R+K?—- KuK®—167p =0

M, = D,K*, — D, — 87j, = 0

For BNS: need GR+Hydro equations!!

3. PDEs analysis:

e Introduced idea of hyperbolicity and thought about well-posedness of the I[(B)VP.

Remember: strong hyperbolicity! d,u = AP0,u+ S. (APS,) - principal symbol, full set of

eigenvalues and eigenvectors [plus technical conditions].

e Gauge conditions.

e We also saw how to turn the constraints into an elliptic PDE.

4., 5. and 6. only really in projects.

7. Physical interpretation: (at least tools for the job).

e Event vs apparent horizons.

e Gravitational wave extraction.

Thanks for listening!! Questions?
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